Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(1): e18021, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37994489

RESUMO

Clinical assessments relying on pathology classification demonstrate limited effectiveness in predicting clinical outcomes and providing optimal treatment for patients with ovarian cancer (OV). Consequently, there is an urgent requirement for an ideal biomarker to facilitate precision medicine. To address this issue, we selected 15 multicentre cohorts, comprising 12 OV cohorts and 3 immunotherapy cohorts. Initially, we identified a set of robust prognostic risk genes using data from the 12 OV cohorts. Subsequently, we employed a consensus cluster analysis to identify distinct clusters based on the expression profiles of the risk genes. Finally, a machine learning-derived prognostic signature (MLDPS) was developed based on differentially expressed genes and univariate Cox regression genes between the clusters by using 10 machine-learning algorithms (101 combinations). Patients with high MLDPS had unfavourable survival rates and have good prediction performance in all cohorts and in-house cohorts. The MLDPS exhibited robust and dramatically superior capability than 21 published signatures. Of note, low MLDIS have a positive prognostic impact on patients treated with anti-PD-1 immunotherapy by driving changes in the level of infiltration of immune cells. Additionally, patients suffering from OV with low MLDIS were more sensitive to immunotherapy. Meanwhile, patients with low MLDIS might benefit from chemotherapy, and 19 compounds that may be potential agents for patients with low MLDIS were identified. MLDIS presents an appealing instrument for the identification of patients at high/low risk. This could enhance the precision treatment, ultimately guiding the clinical management of OV.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Prognóstico , Imunoterapia , Algoritmos , Aprendizado de Máquina , Microambiente Tumoral
2.
J Obstet Gynaecol Res ; 47(7): 2394-2405, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33949053

RESUMO

AIM: Endometriosis is a common gynecological disorder characterized by chronic pelvic pain and infertility, which negatively affects women's health worldwide. AFAP1-AS1 has been implicated in endometriosis lesions recently, but its mechanism of endometriosis progression remains unclear. METHODS: Endometrial stromal cells (ESCs) were used to identify the role of AFAP1-AS1 in endometriosis. The migratory capability was determined by transwell. Gene and protein expressions were identified by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Cell viability and apoptosis were detected by MTT assays and flow cytometry, respectively. Luciferase report assays were used to identify the interaction of AFAP1-AS1, miR-424-5p and signal transducer and activator of transcription 3 (STAT3). RESULTS: AFAP1-AS1 knockdown or miR-424-5p overexpression inhibited proliferation and migration, and promoted apoptosis in ESCs. In addition, knockdown of AFAP1-AS1 repressed the expression of ki-67 and Bcl-2, and promoted the levels of cleaved caspase-3 and Bax. Furthermore, knockdown of AFAP1-AS1 inhibited the conversion of E-cadherin to N-cadherin and the expression of Snail. Moreover, AFAP1-AS1 activated the STAT3/transforming growth factor-ß1 (TGF-ß1)/Smad2 axis via directly targeting miR-424-5p. The regulatory effect of AFAP1-AS1 silencing in ESC migration, proliferation, and apoptosis was reversed by miR-424-5p inhibition or STAT3 overexpression. CONCLUSIONS: AFAP1-AS1 silencing could inhibit cell proliferation and promote apoptosis by regulating STAT3/TGF-ß/Smad signaling pathway via targeting miR-424-5p in ESCs. AFAP1-AS1 may be a potential therapeutic target of controlling the progression of endometriosis.


Assuntos
Endometriose , MicroRNAs , RNA Longo não Codificante , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Fator de Transcrição STAT3 , Transdução de Sinais , Fator de Crescimento Transformador beta
3.
ACS Appl Mater Interfaces ; 13(18): 21482-21498, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33928779

RESUMO

Aromatics from selective hydrodeoxygenation (HDO) of biomass-derived bio-oil are an ideal feedstock for replacing industrial fossil products. In this study, biochar-modified Hß/Ni-V catalysts were prepared and tested in the atmospheric HDO of guaiacol and bio-oil to produce aromatics. Compared with unmodified Hß/Ni-V, higher HDO activity was achieved in catalysts with all kinds of biochar modifications. Especially, the pine nut shell biochar (PB)-modified PB-Hß-8/Ni-V showed the highest selectivity to aromatics (69.17%), mainly including benzene and toluene. Besides, under the conditions of 380 °C and weight hourly space velocity (WHSV) of 0.5 h-1, the cleavage of CAr-OH (CAr means the carbon in the benzene ring) was promoted to form more aromatics. Moreover, great recyclability (58.77% aromatics for the reactivated run-3 test) and efficient HDO of bio-oil (44.9% aromatic yield) were also achieved. Based on the characterization results, the enhanced aromatic selectivity of PB-Hß-8/Ni-V was attributed to the synergetic effect between PB and Hß/Ni-V. In detail, a stable surface migrated-carbon layer was formed on Hß/Ni-V via the metal catalytic chemical vapor deposition (CVD) process of the pyrolysis PB volatiles. Simultaneously, a carbothermal reduction driven by the migrated-carbon took place to decorate the surface metals, obtaining more Ni0 and V3+ active sites. With this synergism, increased Ni0 sites promoted H2 adsorption and dissociation, which improved the hydrogenation activity. Furthermore, the higher affinity of the reactant and increased oxygen vacancies both contributed to enhancing the selective surface adsorption of oxygenous groups and the cleavage of the CAr-OH bond, thus improving the deoxygenation activity. Therefore, the HDO activity was improved to form more target aromatics over biochar-modified catalysts. This work highlighted a potential avenue to develop economic and environmental catalysts for the upgrading of bio-oil.


Assuntos
Carbono/química , Carvão Vegetal/química , Níquel/química , Óleos/química , Oxigênio/química , Vanádio/química , Adsorção , Catálise , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica , Propriedades de Superfície , Termogravimetria , Difração de Raios X
4.
Bioresour Technol ; 314: 123780, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32663781

RESUMO

In this study, three types of biomass were torrefied at different times (0.5, 1, 1.5 h) and temperature (200, 240, 280, 320 °C), which were further pyrolyzed at 550 °C after torrefaction. CEI (carbon element index), which was established based on the carbon content of the torrefied biomass, was chosen as an indicator for reflecting torrefaction severity. The results showed that there was a curvilinear relationship between CEI and the physicochemical characteristics, energy recovery of torrefied biomass, which obtained an average goodness of fit was higher than 0.93. Moreover, the goodness of fit between CEI and pyrolysis carbon and bio-oil yield was higher than 0.95 and 0.91, respectively. Especially, the bio-oil composition and CEI were fitted by a quadratic function (y = a + bx + cx2). Based on the function, the yield of phenols could be predicted based on the CEI value, which would benefit for the preparation of higher quality bio-oil directionally.


Assuntos
Temperatura Alta , Óleos de Plantas , Biomassa , Polifenóis , Temperatura
5.
Bioresour Technol ; 314: 123735, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32619806

RESUMO

In this work, the high yield self-N-O doped hydrochar had been prepared through the hydrothermal carbonization of microalgae in the aqueous bio-oil. The effects of temperature, residence time and the ratio of Chlorella and bio-oil on the solid yield were investigated. The results showed that the hydrochar had excellent thermal stability and abundant nitrogen and oxide functional groups, its solid yield reached 199.33%. After activated by KOH at high temperature, the hydrochar was transformed into a porous carbon material with high nitrogen content. The porous carbon showed high CO2 absorption of 5.57 mmol/g at 0 °C and 1 bar. It also exhibited a high specific capacitance of 216.6F/g at 0.2 A/g and a good electrochemical stability with 88% capacitance retention after consecutive 5000 cycles.


Assuntos
Chlorella , Microalgas , Carbono , Nitrogênio , Oxigênio , Óleos de Plantas , Polifenóis , Temperatura
6.
Biotechnol Biofuels ; 12: 249, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636708

RESUMO

BACKGROUND: Biomass fuel has been used to supply heat or crude materials in industry to replace the traditional fossil fuel which was one of the chief causes of climate warming. However, the large-scale utilization of biomass fuel was restricted due to the low density and high hydrophilicity of biomass, which causes the problem of transportation and storage. Therefore, pelletization of biomass was used to improve its fuel density. At present, the biomass pellet was widely used to supply heat, gas or electricity generation via gasification, which supplied clean and sustainable energy for industry. However, the energy consumption during pelletization and high hydrophilicity of pellets were still the problem for the large-scale application of biomass pellet. In this study, hydrothermal carbonization and surfactant played the role of permeation, adsorption and wetting in the solution, which was expected to improve the fuel properties and pelletization effectivity of corn stover. RESULTS: In the article, surfactant (PEG400, Span80, SDBS) was chosen to be combined with wet torrefaction to overcome the drawbacks and improve the pelletization and combustion properties of Corn stover (CS). Especially, hydrothermal carbonization (HTC) combined with surfactant improves the yield of solid products and reduces the ash content of solid product, which was beneficial for reducing the ashes of furnace during gasification. Meanwhile, surfactant promotes the formation of pseudo-lignin and the absorption for oil with low O and high C during HTC, which improves the energy density of solid product. Furthermore, the oil in solid product plays the role of lubricant and binder, which reduces the negative effect of high energy consumption, low bulk density and weak pellets strength caused by HTC during pelletization. HTC combined with surfactant improved the hydrophobicity of pellet as well as grindability due to the modification of solid product. Moreover, surfactant combined with HTC improved the combustion characteristic of solid product such as ignition and burning temperature as well as kinetic parameters due to the bio-oil absorbed and the improvement of surface and porosity. CONCLUSIONS: The study supplied a new, less-energy intensive and effective method to improve the pelletization and combustion properties of corn stover via hydrothermal carbonization combined with surfactant, and provided a promising alternative fuel from corn stover .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA