RESUMO
BACKGROUND: Cancer susceptibility germline mutations are associated with pancreatic ductal adenocarcinoma (PDAC). However, the hereditary status of PDAC and its impact on survival is largely unknown in the Asian population. METHODS: Exome sequencing was performed on 527 blood samples from PDAC individuals and analyzed for mutations in 80 oncogenic genes. Pathogenic and likely pathogenic (P/LP) germline variants were diagnosed according to the ACMG variant classification categories. The association between germline homologous recombination gene mutations (gHRmut, including BAP1, BRCA1, BRCA2, PALB2, ATM, BLM, BRIP1, CHEK2, NBN, MUTYH, FANCA and FANCC) and the treatment outcomes was explored in patients with stage III/IV diseases treated with first-line (1L) platinum-based versus platinum-free chemotherapy. RESULTS: Overall, 104 of 527 (19.7%) patients carried germline P/LP variants. The most common mutated genes were BRCA2 (3.60%), followed by ATR (2.66%) and ATM (1.9%). After a median follow-up duration of 38.3-months (95% confidence interval, 95% CI 35.0-43.7), the median overall survival (OS) was not significantly different among patients with gHRmut, non-HR germline mutations, or no mutation (P = 0.43). Among the 320 patients with stage III/IV disease who received 1L combination chemotherapy, 32 (10%) had gHRmut. Of them, patients receiving 1L platinum-based chemotherapy exhibited a significantly longer median OS compared to those with platinum-free chemotherapy, 26.1 months (95% CI 12.7-33.7) versus 9.6 months (95% CI 5.9-17.6), P = 0.001. However, the median OS of patients without gHRmut was 14.5 months (95% CI 13.2-16.9) and 12.6 months (95% CI 10.8-14.7) for patients receiving 1L platinum-based and platinum-free chemotherapy, respectively (P = 0.22). These results were consistent after adjusting for potential confounding factors including age, tumor stage, performance status, and baseline CA 19.9 in the multivariate Cox regression analysis. CONCLUSIONS: Our study showed that nearly 20% of Taiwanese PDAC patients carried germline P/LP variants. The longer survival observed in gHRmut patients treated with 1L platinum-based chemotherapy highlights the importance of germline testing for all patients with advanced PDAC at diagnosis.
Assuntos
Mutação em Linhagem Germinativa , Neoplasias Pancreáticas , Humanos , Taiwan , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Recombinação Homóloga , Genes BRCA2 , Proteína BRCA1/genética , Proteína BRCA2/genéticaRESUMO
BACKGROUND: Dominant dystrophic epidermolysis bullosa (DDEB) is characterized by trauma-induced blisters and, in some individuals, intense pruritus. Precisely what causes itch in DDEB and optimal ways to reduce it have not been fully determined. OBJECTIVES: To characterize DDEB skin transcriptomes to identify therapeutic targets to reduce pruritus in patients. METHODS: Using bulk RNA sequencing, we evaluated affected and unaffected skin biopsy samples from six patients with DDEB (all with the very itchy pruriginosa subtype) and four healthy individuals. Single-cell transcriptomes of affected (n = 2) and unaffected (n = 1) DDEB skin and healthy skin (n = 2) were obtained. Dupilumab treatment was provided for three patients. RESULTS: The skin bulk transcriptome showed significant enrichment of T helper (Th)1/2 and Th17 pathways in affected DDEB skin compared with nonlesional DDEB skin and healthy skin. Single-cell transcriptomics showed an association of glycolytically active GATA3+ Th2 cells in affected DDEB skin. Treatment with dupilumab in three people with DDEB led to significantly reduced visual analogue scale (VAS) itch scores after 12 weeks (mean VAS 3.83) compared with pretreatment (mean VAS 7.83). Bulk RNAseq and quantitative polymerase chain reaction showed that healthy skin and dupilumab-treated epidermolysis bullosa (EB) pruriginosa skin have similar transcriptomic profiles and reduced Th1/Th2 and Th17 pathway enrichment. CONCLUSIONS: Single-cell RNAseq helps define an enhanced DDEB-associated Th2 profile and rationalizes drug repurposing of anti-Th2 drugs in treating DDEB pruritus.
Dominant dystrophic epidermolysis bullosa (DDEB) is a rare inherited skin disease that causes fragile skin that blisters easily, often triggered by minor injuries. These blisters are accompanied by intense itching, which can be distressing. The underlying cause of DDEB lies in genetic mutations in a gene called COL7A1. This gene encodes 'type VII collagen', a protein crucial for attaching the outer skin layer (epidermis) to the layer beneath (dermis). Although the genetic basis of DDEB is understood, the causes of itch are not known. As well as this, effective treatments for DDEB are lacking, which has driven scientists to explore innovative approaches like repurposing existing drugs. Drug repurposing involves using medications that have already been approved for other health conditions. One such drug is dupilumab, which is used for severe atopic dermatitis (eczema). Dupilumab targets immune cells called Th2 cells, which play a role in inflammation and allergies. While dupilumab has shown promise in relieving DDEB itching, the way it works in this condition is unclear. This study, carried out by a group of researchers in Taiwan, looked at gene expression in DDEB-affected and unaffected skin, and compared it to gene expression in healthy skin samples. We found heightened activity in Th2 immune cells and abnormal gene signals related to itching, similar to atopic dermatitis. These findings support using dupilumab and other anti-inflammatory drugs to alleviate itching in DDEB. Clinical trials will be crucial to evaluate the effectiveness of these drugs for managing DDEB symptoms. This research opens doors for enhanced treatment options and improving the quality of life of people living with DDEB.
Assuntos
Anticorpos Monoclonais Humanizados , Epidermólise Bolhosa Distrófica , Fator de Transcrição GATA3 , Prurido , Pele , Células Th2 , Humanos , Epidermólise Bolhosa Distrófica/complicações , Epidermólise Bolhosa Distrófica/imunologia , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/patologia , Prurido/etiologia , Prurido/imunologia , Prurido/tratamento farmacológico , Prurido/patologia , Células Th2/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Masculino , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/genética , Feminino , Pele/imunologia , Pele/patologia , Adulto , Transcriptoma , Estudos de Casos e Controles , Pessoa de Meia-Idade , Análise de Célula ÚnicaRESUMO
Dysregulation of DNA damage response/repair and genomic instability promote tumorigenesis and the development of various neurological diseases. Autophagy is a dynamic catabolic process used for removing unnecessary or dysfunctional proteins and organelles in cells. Despite the consensus in the field that upregulation of autophagy promotes the initiation of the DNA damage response and assists the process of homologous recombination upon genotoxic stress, a few studies showed that upregulation of autophagy (or excessive autophagy), under certain circumstances, triggers caspase/apoptosis-independent DNA damage and promotes genomic instability in cells. As the cytoprotective and the DNA repairing roles of autophagy have been discussed extensively in different reviews, here, we mainly focus on describing the latest studies which reported the "opposite" roles of autophagy (or excessive autophagy). We will discuss whether the "dark side" (i.e., the opposite/unconventional effect) of autophagy on the maintenance of DNA integrity and genomic stability really does exist in cells and if it does, will it be one of the yet-to-be-identified causes of cancer, in this review.
Assuntos
Autofagia , Instabilidade Genômica , Autofagia/genética , Carcinogênese/metabolismo , Dano ao DNA/genética , Reparo do DNA , Instabilidade Genômica/genética , HumanosRESUMO
Kidney transplantation is a lifesaving option for patients with end-stage kidney disease. In Taiwan, urothelial carcinoma (UC) is the most common de novo cancer after kidney transplantation (KT). UC has a greater degree of molecular heterogeneity than do other solid tumors. Few studies have explored genomic alterations in UC after KT. We performed whole-exome sequencing to compare the genetic alterations in UC developed after kidney transplantation (UCKT) and in UC in patients on hemodialysis (UCHD). After mapping and variant calling, 18,733 and 11,093 variants were identified in patients with UCKT and UCHD, respectively. We excluded known single-nucleotide polymorphisms (SNPs) and retained genes that were annotated in the Catalogue of Somatic Mutations in Cancer (COSMIC), in the Integrative Onco Genomic cancer mutations browser (IntOGen), and in the Cancer Genome Atlas (TCGA) database of genes associated with bladder cancer. A total of 14 UCKT-specific genes with SNPs identified in more than two patients were included in further analyses. The single-base substitution (SBS) profile and signatures showed a relative high T > A pattern compared to COMSIC UC mutations. Ingenuity pathway analysis was used to explore the connections among these genes. GNAQ, IKZF1, and NTRK3 were identified as potentially involved in the signaling network of UCKT. The genetic analysis of posttransplant malignancies may elucidate a fundamental aspect of the molecular pathogenesis of UCKT.
Assuntos
Carcinoma de Células de Transição , Transplante de Rim , Neoplasias da Bexiga Urinária , Humanos , Mutação/genética , Neoplasias da Bexiga Urinária/patologia , Sequenciamento do ExomaRESUMO
Oral squamous cell carcinoma (OSCC) carcinogenesis involves heterogeneous tumor cells, and the tumor microenvironment (TME) is highly complex with many different cell types. Cancer cell-TME interactions are crucial in OSCC progression. Candida albicans (C. albicans)-frequently pre-sent in the oral potentially malignant disorder (OPMD) lesions and OSCC tissues-promotes malignant transformation. The aim of the study is to verify the mechanisms underlying OSCC car-cinogenesis with C. albicans infection and identify the biomarker for the early detection of OSCC and as the treatment target. The single-cell RNA sequencing analysis (scRNA-seq) was performed to explore the cell subtypes in normal oral mucosa, OPMD, and OSCC tissues. The cell composi-tion changes and oncogenic mechanisms underlying OSCC carcinogenesis with C. albicans infec-tion were investigated. Gene Set Variation Analysis (GSVA) was used to survey the mechanisms underlying OSCC carcinogenesis with and without C. albicans infection. The results revealed spe-cific cell clusters contributing to OSCC carcinogenesis with and without C. albicans infection. The major mechanisms involved in OSCC carcinogenesis without C. albicans infection are the IL2/STAT5, TNFα/NFκB, and TGFß signaling pathways, whereas those involved in OSCC carcinogenesis with C. albicans infection are the KRAS signaling pathway and E2F target down-stream genes. Finally, stratifin (SFN) was validated to be a specific biomarker of OSCC with C. albicans infection. Thus, the detailed mechanism underlying OSCC carcinogenesis with C. albicans infection was determined and identified the treatment biomarker with potential precision medicine applications.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Biomarcadores , Candida albicans/genética , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma de Células Escamosas/patologia , Humanos , Neoplasias Bucais/patologia , Análise de Sequência de RNA , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral/genéticaRESUMO
Activation of autophagy plays a critical role in DNA repair, especially for the process of homologous recombination. Despite upregulation of autophagy promotes both the survival and the death of cells, the pathways that govern the pro-cell death effects of autophagy are still incompletely understood. YM155 is originally developed as an expression suppressant of BIRC5 (an anti-apoptotic molecule) and it has reached Phase I/II clinical trials for the treatment of variety types of cancer. However, the target-specificity of YM155 has recently been challenged as several studies reported that YM155 exhibits direct DNA damaging effects. Recently, we discovered that BIRC5 is an autophagy negative-modulator. Using function-comparative analysis, we found in the current study that YM155 and BIRC5 siRNA both induced early "autophagy-dependent ROS production-mediated" DNA damage/strand breaks and concurrently downregulated the expression of RAD54L, RAD51, and MRE11, which are molecules known for their important roles in homologous recombination, in human cancer (MCF7, MDA-MB-231, and SK-BR-3) and mouse embryonic fibroblast (MEF) cells. Similar to the effects of YM155 and BIRC5 siRNA, downregulation of RAD54L and RAD51 by siRNA induced autophagy and DNA damage/strand breaks in cells, suggesting YM155/BIRC5 siRNA might also induce autophagy partly through RAD54L and RAD51 downregulations. We further observed that prolonged YM155 and BIRC5 siRNA treatment induced autophagic vesicle formation proximal to the nucleus and triggered DNA leakage. In conclusion, our findings reveal a novel mechanism of action of YM155 (i.e. induces autophagy-dependent ROS production-mediated DNA damage) in cancer cells and show the functional complexity of BIRC5 and autophagy involving the modulation of genome stability, highlighting that upregulation of autophagy is not always beneficial to the DNA repair process. Our findings can aid the development of a variety of BIRC5-directly/indirectly targeted anticancer therapies that are currently under pre-clinical and clinical investigations.
Assuntos
Antineoplásicos/farmacologia , Reparo do DNA/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Imidazóis/farmacologia , Naftoquinonas/farmacologia , Neoplasias/tratamento farmacológico , Survivina/genética , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Upregulation of ABCB1/MDR1 (P-gp) and BIRC5/Survivin promotes multidrug resistance in a variety of human cancers. LCL161 is an anti-cancer DIABLO/SMAC mimetic currently being tested in patients with solid tumors, but the molecular mechanism of action of LCL161 in cancer cells is still incompletely understood. It is still unclear whether LCL161 is therapeutically applicable for patients with ABCB1-overexpressing multidrug resistant tumors. In this study, we found that the potency of LCL161 is not affected by the expression of ABCB1 in KB-TAX50, KB-VIN10, and NTU0.017 cancer cells. Besides, LCL161 is equally potent towards the parental MCF7 breast cancer cells and its BIRC5 overexpressing, hormone therapy resistance subline MCF7-TamC3 in vitro. Mechanistically, we found that LCL161 directly modulates the ABCB1-ATPase activity and inhibits ABCB1 multi-drug efflux activity at low cytotoxic concentrations (i.e. 0.5xIC50 or less). Further analysis revealed that LCL161 also decreases intracellular ATP levels in part through BIRC5 downregulation. Therapeutically, co-treatment with LCL161 at low cytotoxic concentrations restored the sensitivity to the known ABCB1 substrate, paclitaxel, in ABCB1-expressing cancer cells and increased the sensitivity to tamoxifen in MCF7-TamC3 cells. In conclusion, LCL161 has the potential for use in the management of cancer patients with ABCB1 and BIRC5-related drug resistance. The findings of our study provide important information to physicians for designing a more "patient-specific" LCL161 clinical trial program in the future.
Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/farmacologia , Proteínas Mitocondriais/farmacologia , Survivina/antagonistas & inibidores , Tiazóis/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Antineoplásicos/química , Proteínas Reguladoras de Apoptose/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Proteínas Mitocondriais/química , Estrutura Secundária de Proteína , Survivina/biossíntese , Survivina/genética , Tiazóis/químicaRESUMO
X-linked inhibitor of apoptosis protein (XIAP), survivin, and BRUCE are members of the inhibitor-of-apoptosis protein (IAP) family known for their inhibitory effects on caspase activity and dysregulation of these molecules has widely been shown to cause embryonic defects and to promote tumorigenesis in human. Besides the anti-apoptotic functions, recent discoveries have revealed that XIAP, survivin, and BRUCE also exhibit regulatory functions for autophagy in cells. As the role of autophagy in human diseases has already been discussed extensively in different reviews; in this review, we will discuss the emerging autophagic role of XIAP, survivin, and BRUCE in cancer cells. We also provide an update on the anti-apoptotic functions and the roles in maintaining DNA integrity of these molecules. Second mitochondria-derived activator of caspases (Smac) is a pro-apoptotic protein and IAPs are the molecular targets of various Smac mimetics currently under clinical trials. Better understanding on the functions of XIAP, survivin, and BRUCE can enable us to predict possible side effects of these drugs and to design a more "patient-specific" clinical trial for Smac mimetics in the future.
Assuntos
Apoptose/genética , Proteínas Inibidoras de Apoptose/fisiologia , Survivina/fisiologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/fisiologia , Autofagia , Humanos , Proteínas Inibidoras de Apoptose/genética , Survivina/genética , Células Tumorais Cultivadas , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genéticaRESUMO
Secondary polycythemia is a paraneoplastic syndrome observed in tumors with excessive erythropoietin (EPO) production. Renal cell carcinoma (RCC) and cerebellar hemangioblastoma are the 2 most well-known tumors to induce secondary polycythemia. Hemangioblastomas occurring in the kidney are rare. In this work we present a case of renal hemangioblastoma that caused erythrocytosis in a 19-year-old man. We demonstrated intratumoural EPO production by immunohistochemistry, and conducted whole-exome sequencing to evaluate possible genetic alterations that reported to induce tumor-related polycythemia. In spite of an indolent clinical behavior, renal hemangioblastoma is difficult to differentiate from RCC not only clinically, but also histopathologically. Given that RCC is the most well-known renal tumor to induce erythrocytosis, the uncommon manifestation of polycythemia in renal hemangioblastoma, as shown in our case, can cause further diagnostic challenges. Renal hemangioblastoma should be listed in the differential diagnoses of renal tumors presenting with erythrocytosis, apart from the most common RCC.
Assuntos
Carcinoma de Células Renais , Eritropoetina , Hemangioblastoma , Neoplasias Renais , Policitemia , Humanos , Masculino , Adulto Jovem , Carcinoma de Células Renais/complicações , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/patologia , Eritropoetina/genética , Hemangioblastoma/complicações , Hemangioblastoma/diagnóstico , Rim/patologia , Neoplasias Renais/complicações , Neoplasias Renais/diagnóstico , Neoplasias Renais/patologia , Policitemia/etiologia , Policitemia/complicaçõesRESUMO
Non-alcoholic fatty liver disease (NAFLD) is a chronic disease caused by hepatic steatosis. Adenosine deaminases acting on RNA (ADARs) catalyze adenosine to inosine RNA editing. However, the functional role of ADAR2 in NAFLD is unclear. ADAR2+/+/GluR-BR/R mice (wild type, WT) and ADAR2-/-/GluR-BR/R mice (ADAR2 KO) mice are fed with standard chow or high-fat diet (HFD) for 12 weeks. ADAR2 KO mice exhibit protection against HFD-induced glucose intolerance, insulin resistance, and dyslipidemia. Moreover, ADAR2 KO mice display reduced liver lipid droplets in concert with decreased hepatic TG content, improved hepatic insulin signaling, better pyruvate tolerance, and increased glycogen synthesis. Mechanistically, ADAR2 KO effectively mitigates excessive lipid production via AMPK/Sirt1 pathway. ADAR2 KO inhibits hepatic gluconeogenesis via the AMPK/CREB pathway and promotes glycogen synthesis by activating the AMPK/GSK3ß pathway. These results provide evidence that ADAR2 KO protects against NAFLD progression through the activation of AMPK signaling pathways.
Assuntos
Adenosina Desaminase , Dieta Hiperlipídica , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Proteínas de Ligação a RNA , Transdução de Sinais , Animais , Camundongos , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/deficiência , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/metabolismo , Obesidade/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genéticaRESUMO
The interaction between glioblastoma cells and glioblastoma-associated macrophages (GAMs) influences the immunosuppressive tumor microenvironment, leading to ineffective immunotherapies. We hypothesized that disrupting the communication between tumors and macrophages would enhance the efficacy of immunotherapies. Transcriptomic analysis of recurrent glioblastoma specimens indicated an enhanced neuroinflammatory pathway, with CXCL12 emerging as the top-ranked gene in secretory molecules. Single-cell transcriptome profiling of naïve glioblastoma specimens revealed CXCL12 expression in tumor and myeloid clusters. An analysis of public glioblastoma datasets has confirmed the association of CXCL12 with disease and PD-L1 expression. In vitro studies have demonstrated that exogenous CXCL12 induces pro-tumorigenic characteristics in macrophage-like cells and upregulated PD-L1 expression through NF-κB signaling. We identified CXCR7, an atypical receptor for CXCL12 predominantly present in tumor cells, as a negative regulator of CXCL12 expression by interfering with extracellular signal-regulated kinase activation. CXCR7 knockdown in a glioblastoma mouse model resulted in worse survival outcomes, increased PD-L1 expression in GAMs, and reduced CD8+ T-cell infiltration compared with the control group. Ex vivo T-cell experiments demonstrated enhanced cytotoxicity against tumor cells with a selective CXCR7 agonist, VUF11207, reversing GAM-induced immunosuppression in a glioblastoma cell-macrophage-T-cell co-culture system. Notably, VUF11207 prolonged survival and potentiated the anti-tumor effect of the anti-PD-L1 antibody in glioblastoma-bearing mice. This effect was mitigated by an anti-CD8ß antibody, indicating the synergistic effect of VUF11207. In conclusion, CXCL12 conferred immunosuppression mediated by pro-tumorigenic and PD-L1-expressing GAMs in glioblastoma. Targeted activation of glioblastoma-derived CXCR7 inhibits CXCL12, thereby eliciting anti-tumor immunity and enhancing the efficacy of anti-PD-L1 antibodies.
Assuntos
Antígeno B7-H1 , Quimiocina CXCL12 , Glioblastoma , Receptores CXCR , Glioblastoma/patologia , Glioblastoma/imunologia , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Animais , Receptores CXCR/metabolismo , Receptores CXCR/genética , Quimiocina CXCL12/metabolismo , Camundongos , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Acne keloidalis is a primary scarring alopecia characterized by longstanding inflammation in the scalp causing keloid-like scar formation and hair loss. Histologically, acne keloidalis is characterized by mixed leukocytic infiltrates in the acute stage followed by a granulomatous reaction and extensive fibrosis in the later stages. To further explore its pathogenesis, bulk RNA sequencing, single-cell RNA sequencing, and spatial transcriptomics were applied to occipital scalp biopsy specimens of lesional and adjacent no-lesional skin in patients with clinically active disease. Unbiased clustering revealed 19 distinct cell populations, including 2 notable populations: POSTN+ fibroblasts with enriched extracellular matrix signatures and SPP1+ myeloid cells with an M2 macrophage phenotype. Cell communication analyses indicated that fibroblasts and myeloid cells communicated by SPP1 signaling networks in lesional skin. A reverse transcriptomics in silico approach identified corticosteroids as possessing the capability to reverse the gene expression signatures of SPP1+ myeloid cells and POSTN+ fibroblasts. Intralesional corticosteroid injection greatly reduced SPP1 and POSTN gene expression as well as acne keloidalis disease activity. Spatial transcriptomics and immunofluorescence staining verified microanatomic specificity of SPP1+ myeloid cells and POSTN+ fibroblasts with disease activity. In summary, the communication between POSTN+ fibroblasts and SPP1+ myeloid cells by SPP1 axis may contribute to the pathogenesis of acne keloidalis.
Assuntos
Acne Queloide , Fibroblastos , Macrófagos , Humanos , Fibroblastos/metabolismo , Fibroblastos/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Acne Queloide/patologia , Acne Queloide/metabolismo , Osteopontina/metabolismo , Osteopontina/genética , Fibrose , Masculino , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Feminino , Adulto , Cicatriz/patologia , Couro Cabeludo/patologia , Comunicação Celular , Biópsia , Queloide/patologia , Queloide/metabolismoRESUMO
Autosomal Dominant polycystic kidney disease (ADPKD) is the most common inherited adult kidney disease. Although ADPKD is primarily caused by PKD1 and PKD2, the identification of several novel causative genes in recent years has revealed more complex genetic heterogeneity than previously thought. To study the disease-causing mutations of ADPKD, a total of 920 families were collected and their diagnoses were established via clinical and image studies by Taiwan PKD Consortium investigators. Amplicon-based library preparation with next-generation sequencing, variant calling, and bioinformatic analysis was used to identify disease-causing mutations in the cohort. Microsatellite analysis along with genotyping and haplotype analysis was performed in the PKD2 p.Arg803* family members. The age of mutation was calculated to estimate the time at which the mutation occurred or the founder arrived in Taiwan. Disease-causing mutations were identified in 634 families (68.9%) by detection of 364 PKD1, 239 PKD2, 18 PKHD1, 7 GANAB, and 6 ALG8 pathogenic variants. 162 families (17.6%) had likely causative but non-diagnostic variants of unknown significance (VUS). A single PKD2 p.Arg803* mutation was found in 17.8% (164/920) of the cohort in Taiwan. Microsatellite and array analysis showed that 80% of the PKD2 p.Arg803* families shared the same haplotype in a 250 kb region, indicating those families may originate from a common ancestor 300 years ago. Our findings provide a mutation landscape as well as evidence that a founder effect exists and has contributed to a major percentage of the ADPKD population in Taiwan.
RESUMO
BACKGROUND: Glioblastoma (GBM) is the most aggressive and lethal brain tumor. Although the histone deacetylase (HDAC)/transcription factor axis promotes growth in GBM, whether HDACs including HDAC6 are involved in modulating long non-coding RNAs (lncRNAs) to affect GBM malignancy remains obscure. METHODS: Integrative analysis of microarray and RNA-seq was performed to identify lncRNAs governed by HDAC6. Half-life measurement and RNA-protein pull-down assay combined with isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis were conducted to identify RNA modulators. The effect of LINC00461 on GBM malignancy was evaluated using animal models and cell proliferation-related assays. Functional analysis of the LINC00461 downstream networks was performed comprehensively using ingenuity pathway analysis and public databases. RESULTS: We identified a lncRNA, LINC00461, which was substantially increased in stem-like/treatment-resistant GBM cells. LINC00461 was inversely correlated with the survival of mice-bearing GBM and it was stabilized by the interaction between HDAC6 and RNA-binding proteins (RBPs) such as carbon catabolite repression-negative on TATA-less (CCR4-NOT) core exoribonuclease subunit 6 and fused in sarcoma. Targeting LINC00461 using azaindolylsulfonamide, an HDAC6 inhibitor, decreased cell-division-related proteins via the lncRNA-microRNA (miRNA)-mRNA networks and caused cell-cycle arrest, thereby suppressing proliferation in parental and drug-resistant GBM cells and prolonging the survival of mice-bearing GBM. CONCLUSIONS: This study sheds light on the role of LINC00461 in GBM malignancy and provides a novel therapeutic strategy for targeting the HDAC6/RBP/LINC00461 axis and its downstream effectors in patients with GBM.
Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , Desacetilase 6 de Histona/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , TransfecçãoRESUMO
BACKGROUND: The mechanism by which glioblastoma evades temozolomide (TMZ)-induced cytotoxicity is largely unknown. We hypothesized that mitochondria plays a role in this process. METHODS: RNA transcriptomes were obtained from tumor samples and online databases. Expression of different proteins was manipulated using RNA interference or gene amplification. Autophagic activity and mitochondrial metabolism was assessed in vitro using the respective cellular and molecular assays. In vivo analysis were also carried out in this study. RESULTS: High SH3GLB1 gene expression was found to be associated with higher disease grading and worse survival profiles. Single-cell transcriptome analysis of clinical samples suggested that SH3GLB1 and the altered gene levels of oxidative phosphorylation (OXPHOS) were related to subsets expressing a tumor-initiating cell signature. The SH3GLB1 protein was regulated by promoter binding with Sp1, a factor associated with TMZ resistance. Downregulation of SH3GLB1 resulted in retention of TMZ susceptibility, upregulated p62, and reduced LC3B-II. Autophagy inhibition by SH3GLB1 deficiency and chloroquine resulted in attenuated OXPHOS expression. Inhibition of SH3GLB1 in resistant cells resulted in alleviation of TMZ-enhanced mitochondrial metabolic function, such as mitochondrial membrane potential, mitochondrial respiration, and ATP production. SH3GLB1 modulation could determine tumor susceptibility to TMZ. Finally, in animal models, resistant tumor cells with SH3GLB1 knockdown became resensitized to the anti-tumor effect of TMZ, including the suppression of TMZ-induced autophagy and OXPHOS. CONCLUSIONS: SH3GLB1 promotes TMZ resistance via autophagy to alter mitochondrial function. Characterizing SH3GLB1 in glioblastoma may help develop new therapeutic strategies against this disease in the future.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Autofagia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Mitocôndrias , Temozolomida/farmacologia , Temozolomida/uso terapêuticoRESUMO
BIRC5/Survivin is known as a dual cellular functions protein that directly regulates both apoptosis and mitosis in embryonic cells during embryogenesis and in cancer cells during tumorigenesis and tumor metastasis. However, BIRC5 has seldom been demonstrated as a direct macroautophagy/autophagy regulator in cells. ATG7 expression and ATG12-ATG5-ATG16L1 complex formation are crucial for the phagophore elongation during autophagy in mammalian cells. In this study, we observed that the protein expression levels of BIRC5 and ATG7 were inversely correlated, whereas the expression levels of BIRC5 and SQSTM1/p62 were positively correlated in normal breast tissues and tumor tissues. Mechanistically, we found that BIRC5 negatively modulates the protein stability of ATG7 and physically binds to the ATG12-ATG5 conjugate, preventing the formation of the ATG12-ATG5-ATG16L1 protein complex in human cancer (MDA-MB-231, MCF7, and A549) and mouse embryonic fibroblast (MEF) cells. We also observed a concurrent physical dissociation between BIRC5 and ATG12-ATG5 (but not CASP3/caspase-3) and upregulation of autophagy in MDA-MB-231 and A549 cells under serum-deprived conditions. Importantly, despite the fact that upregulation of autophagy is widely thought to promote DNA repair in cells under genotoxic stress, we found that BIRC5 maintains DNA integrity through autophagy negative-modulations in both human cancer and MEF cells under non-stressed conditions. In conclusion, our study reveals a novel role of BIRC5 in cancer cells as a direct regulator of autophagy. BIRC5 may act as a "bridging molecule", which regulates the interplay between mitosis, apoptosis, and autophagy in embryonic and cancer cells. ABBREVIATIONS: ACTA1: actin; ATG: autophagy related; BIRC: baculoviral inhibitor of apoptosis repeat-containing; BAF: bafilomycin A1; CQ: chloroquine; CASP3: caspase 3; HSPB1/Hsp27: heat shock protein family B (small) member 1/heat shock protein 27; IAPs: inhibitors of apoptosis proteins; IP: immunoprecipitation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PLA: proximity ligation assay; SQSTM1/p62: sequestosome 1; siRNA: small interfering RNA.
Assuntos
Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Autofagia , Dano ao DNA , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Neoplasias/metabolismo , Survivina/metabolismo , Animais , Linhagem Celular Tumoral , Meios de Cultura Livres de Soro , Regulação para Baixo , Humanos , Camundongos , Neoplasias/patologia , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estabilidade ProteicaRESUMO
Intrinsic or acquired resistance to hormone therapy is frequently reported in estrogen receptor positive (ER+) breast cancer patients. Even though dysregulations of histone deacetylases (HDACs) are known to promote cancer cells survival, the role of different HDACs in the induction of hormone therapy resistance in ER+ breast cancer remains unclear. Survivin is a well-known pro-tumor survival molecule and miR-125a-5p is a recently discovered tumor suppressor. In this study, we found that ER+, hormone-independent, tamoxifen-resistant MCF7-TamC3 cells exhibit increased expression of HDAC2, HDAC5, and survivin, but show decreased expression of miR-125a-5p, as compared to the parental tamoxifen-sensitive MCF7 breast cancer cells. Molecular down-regulations of HDAC2, HDAC5, and survivin, and ectopic over-expression of miR-125a-5p, increased the sensitivity of MCF7-TamC3 cells to estrogen deprivation and restored the sensitivity to tamoxifen. The same treatments also further increased the sensitivity to estrogen-deprivation in the ER+ hormone-dependent ZR-75-1 breast cancer cells in vitro. Kaplan-Meier analysis and receiver operating characteristic curve analysis of expression cohorts of breast tumor showed that high HDAC2 and survivin, and low miR-125a-5p, expression levels correlate with poor relapse-free survival in endocrine therapy and tamoxifen-treated ER+ breast cancer patients. Further molecular analysis revealed that HDAC2 and HDAC5 positively modulates the expression of survivin, and negatively regulates the expression miR-125a-5p, in ER+ MCF7, MCF7-TamC3, and ZR-75-1 breast cancer cells. These findings indicate that dysregulations of HDAC2 and HDAC5 promote the development of hormone independency and tamoxifen resistance in ERC breast cancer cells in part through expression regulation of survivin and miR-125a-5p.
RESUMO
Survivin is a member of the inhibitor-of-apoptosis proteins family. It is overexpressed in many different cancer types but not in the differentiated normal tissue. In addition, overexpression of survivin promotes cancer cell survival and induces chemotherapeutic drug resistance, making it an attractive target for new anticancer interventions. Despite survivin being a promising molecular target for anticancer treatment, it is widely accepted that survivin is only a "semi-druggable" target. Therefore, it is important to develop a new strategy to target survivin for anticancer treatment. In this study, we constructed a novel survivin promoter-driven full-length antisense survivin (pSur/AS-Sur) expression plasmid DNA. Promoter activity assay revealed that the activity of the survivin promoter of pSur/AS-Sur correlated with the endogenous expression of survivin at the transcriptional level in the transfected A549, MDA-MB-231, and PANC-1 cancer cells. Western blot analysis showed that liposomal delivery of pSur/AS-Sur successfully downregulated the expression of survivin in A549, MBA-MB-231, and PANC-1 cells in vitro. In addition, delivery of pSur/AS-Sur induced autophagy, caspase-dependent apoptosis, and caspase-independent apoptosis as indicated by the increased LC3B-II conversion, autophagosome formation, caspase-9/-3 and poly(ADP-ribose) polymerase-1 cleavage, and apoptosis-inducing factor nuclear translocation in A549, MBA-MB-231, and PANC-1 cells. Importantly, liposomal delivery of pSur/AS-Sur was also capable of decreasing the proliferation of the survivin/MDR1 coexpressing multidrug-resistant KB-TAX50 cancer cells and the estrogen receptor-positive tamoxifen-resistant MCF7-TamC3 cancer cells in vitro. In conclusion, the results of this study suggest that delivery of a survivin promoter-driven antisense survivin-expressing plasmid DNA is a promising way to target survivin and to treat survivin-expressing cancers in the future.
RESUMO
SAHA is a class I HDAC/HDAC6 co-inhibitor and an autophagy inducer currently undergoing clinical investigations in breast cancer patients. However, the molecular mechanism of action of SAHA in breast cancer cells remains unclear. In this study, we found that SAHA is equally effective in targeting cells of different breast cancer subtypes and tamoxifen sensitivity. Importantly, we found that down-regulation of survivin plays an important role in SAHA-induced autophagy and cell viability reduction in human breast cancer cells. SAHA decreased survivin and XIAP gene transcription, induced survivin protein acetylation and early nuclear translocation in MCF7 and MDA-MB-231 breast cancer cells. It also reduced survivin and XIAP protein stability in part through modulating the expression and activation of the 26S proteasome and heat-shock protein 90. Interestingly, targeting HDAC3 and HDAC6, but not other HDAC isoforms, by siRNA/pharmacological inhibitors mimicked the effects of SAHA in modulating the acetylation, expression, and nuclear translocation of survivin and induced autophagy in MCF7 and MDA-MB-231 cancer cells. Targeting HDAC3 also mimicked the effect of SAHA in up-regulating the expression and activity of proteasome, which might lead to the reduced protein stability of survivin in breast cancer cells. In conclusion, this study provides new insights into SAHA's molecular mechanism of actions in breast cancer cells. Our findings emphasize the complexity of the regulatory roles in different HDAC isoforms and potentially assist in predicting the mechanism of novel HDAC inhibitors in targeted or combinational therapies in the future.
RESUMO
Survivin is a member of the inhibitor-of-apoptosis proteins (IAPs) family; its overexpression has been widely demonstrated to occur in various types of cancer. Overexpression of survivin also correlates with tumor progression and induces anticancer drug resistance. Interestingly, recent studies reveal that survivin exhibits multiple pro-mitotic and anti-apoptotic functions; the differential functions of survivin seem to be caused by differential subcellular localization, phosphorylation, and acetylation of this molecule. In this review, the complex expression regulations and post-translational modifications of survivin are discussed. This review also discusses how recent discoveries improve our understanding of survivin biology and also create opportunities for developing differential-functioned survivin-targeted therapy. Databases such as PubMed, Scopus® (Elsevier, New York, NY, USA), and SciFinder® (CAS, Columbus, OH, USA) were used to search for literature in the preparation of this review.