Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Europace ; 25(2): 698-706, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36056883

RESUMO

AIMS: Macrophage migration inhibitory factor (MIF), a pleiotropic inflammatory cytokine, is highly expressed in patients with atrial fibrillation (AF). Inflammation increases the risk of AF and is primarily triggered by pulmonary vein (PV) arrhythmogenesis. This study investigated whether MIF can modulate the electrical activity of the PV and examined the underlying mechanisms of MIF. METHODS AND RESULTS: A conventional microelectrode, a whole-cell patch clamp, western blotting, and immunofluorescent confocal microscopy were used to investigate electrical activity, calcium (Ca2+) regulation, protein expression, ionic currents, and cytosolic reactive oxygen species (ROS) in rabbit PV tissue and isolated single cardiomyocytes with and without MIF incubation (100 ng/mL, treated for 6 h). The MIF (100 ng/mL)-treated PV tissue (n = 8) demonstrated a faster beating rate (1.8 ± 0.2 vs. 2.6 ± 0.1 Hz, P < 0.05), higher incidence of triggered activity (12.5 vs. 100%, P < 0.05), and premature atrial beat (0 vs. 100%, P < 0.05) than the control PV tissue (n = 8). Compared with the control PV cardiomyocytes, MIF-treated single PV cardiomyocytes had larger Ca2+ transients (0.6 ± 0.1 vs. 1.0 ± 0.1, ΔF/F0, P < 0.05), sarcoplasmic reticulum Ca2+ content (0.9 ± 0.20 vs. 1.7 ± 0.3 mM of cytosol, P < 0.05), and cytosolic ROS (146.8 ± 5.3 vs. 163.7 ± 3.8, ΔF/F0, P < 0.05). Moreover, MIF-treated PV cardiomyocytes exhibited larger late sodium currents (INa-Late), L-type Ca2+ currents, and Na+/Ca2+ exchanger currents than the control PV cardiomyocytes. KN93 [a selective calcium/calmodulin-dependent protein kinase II (CaMKII) blocker, 1 µM], ranolazine (an INa-Late inhibitor, 10 µM), and N-(mercaptopropionyl) glycine (ROS inhibitor, 10 mM) reduced the beating rates and the incidence of triggered activity and premature captures in the MIF-treated PV tissue. CONCLUSION: Macrophage migration inhibitory factor increased PV arrhythmogenesis through Na+ and Ca2+ dysregulation through the ROS activation of CaMKII signalling, which may contribute to the genesis of AF during inflammation. Anti-CaMKII treatment may reverse PV arrhythmogenesis. Our results clearly reveal a key link between MIF and AF and offer a viable therapeutic target for AF treatment.


Assuntos
Fibrilação Atrial , Fatores Inibidores da Migração de Macrófagos , Veias Pulmonares , Animais , Coelhos , Cálcio/metabolismo , Sódio/metabolismo , Fatores Inibidores da Migração de Macrófagos/farmacologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Potenciais de Ação , Miócitos Cardíacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo
2.
Eur J Clin Invest ; 51(5): e13470, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33296074

RESUMO

BACKGROUND: Calcific aortic valve disease is associated with ageing and high mortality. However, no effective pharmacological treatment has been developed. Vascular endothelial growth factor (VEGF) and its receptor are overexpressed in the calcified aortic valve tissue. However, the role of VEGF in calcific aortic valve disease pathogenesis and its underlying mechanisms remain unclear. MATERIALS AND METHODS: Runt-related transcription factor 2 expression and calcium-related signalling were investigated in porcine valvular interstitial cells with or without human VEGF-A recombinant protein (VEGF165 , 1-100 ng/mL) treatment and/or calmodulin-dependent kinase II (CaMKII) inhibitor (KN93, 10 µmol/L) and inositol triphosphate receptor inhibitor (2-aminoethyldiphenyl borate, 30 µmol/L) for 5 days. RESULTS: VEGF165 -treated cells had higher Runt-related transcription factor 2 expression and CaMKII/ adenosine 3',5'-monophosphate response element-binding protein (CREB) signalling activation than did control cells. KN93 reduced Runt-related transcription factor 2 expression and CREB phosphorylation in VEGF165 -treated cells. The 2-aminoethyldiphenyl borate also reduced Runt-related transcription factor 2 expression in VICs treated with VEGF165 . CONCLUSION: VEGF upregulated Runt-related transcription factor 2 expression in VICs by activating the IP3R/CaMKII/CREB signalling pathway.


Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/citologia , Valva Aórtica/patologia , Calcinose/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Valva Aórtica/metabolismo , Benzilaminas/farmacologia , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Subunidade alfa 1 de Fator de Ligação ao Core/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Sulfonamidas/farmacologia , Suínos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/farmacologia
3.
Plant Dis ; 105(8): 2169-2176, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33258435

RESUMO

Meloidogyne incognita causes large-scale losses of agricultural crops worldwide. The natural metabolite furfural acetone has been reported to attract and kill M. incognita, but whether the attractant and nematicidal activities of furfural acetone on M. incognita function simultaneously in the same system, especially in three-dimensional spaces or in soil, is still unknown. Here, we used 23% Pluronic F-127 gel and a soil simulation device to demonstrate that furfural acetone has a significant attract-and-kill effect on M. incognita in both three-dimensional model systems. At 24 h, the chemotaxis index and the corrected mortality of nematodes exposed to 60 mg/ml of furfural acetone in 23% Pluronic F-127 gel were as high as 0.82 and 74.44%, respectively. Soil simulation experiments in moist sand showed that at 48 h, the chemotaxis index and the corrected mortality of the nematode toward furfural acetone reached 0.63 and 82.12%, respectively, and the effect persisted in the presence of tomato plants. In choice experiments, nematodes selected furfural acetone over plant roots and were subsequently killed. In pot studies, furfural acetone had a control rate of 82.80% against M. incognita. Collectively, these results provide compelling evidence for further investigation of furfural acetone as a novel nematode control agent.


Assuntos
Solanum lycopersicum , Tylenchoidea , Acetona , Animais , Antinematódeos/farmacologia , Furaldeído
4.
Int J Mol Sci ; 22(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503985

RESUMO

Glucagon-like peptide 1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT2is) are antihyperglycemic agents with cardioprotective properties against diabetic cardiomyopathy (DCM). However, the distinctive mechanisms underlying GLP-1RAs and SGLT2is in DCM are not fully elucidated. The purpose of this study was to investigate the impacts of GLP1RAs and/or SGLT2is on myocardial energy metabolism, cardiac function, and apoptosis signaling in DCM. Biochemistry and echocardiograms were studied before and after treatment with empagliflozin (10 mg/kg/day, oral gavage), and/or liraglutide (200 µg/kg every 12 h, subcutaneously) for 4 weeks in male Wistar rats with streptozotocin (65 mg/kg intraperitoneally)-induced diabetes. Cardiac fibrosis, apoptosis, and protein expression of metabolic and inflammatory signaling molecules were evaluated by histopathology and Western blotting in ventricular cardiomyocytes of different groups. Empagliflozin and liraglutide normalized myocardial dysfunction in diabetic rats. Upregulation of phosphorylated-acetyl coenzyme A carboxylase, carnitine palmitoyltransferase 1ß, cluster of differentiation 36, and peroxisome proliferator-activated receptor-gamma coactivator, and downregulation of glucose transporter 4, the ratio of phosphorylated adenosine monophosphate-activated protein kinase α2 to adenosine monophosphate-activated protein kinase α2, and the ratio of phosphorylated protein kinase B to protein kinase B in diabetic cardiomyocytes were restored by treatment with empagliflozin or liraglutide. Nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3, interleukin-1ß, tumor necrosis factor-α, and cleaved caspase-1 were significantly downregulated in empagliflozin-treated and liraglutide-treated diabetic rats. Both empagliflozin-treated and liraglutide-treated diabetic rats exhibited attenuated myocardial fibrosis and apoptosis. Empagliflozin modulated fatty acid and glucose metabolism, while liraglutide regulated inflammation and apoptosis in DCM. The better effects of combined treatment with GLP-1RAs and SGLT2is may lead to a potential strategy targeting DCM.


Assuntos
Compostos Benzidrílicos/farmacologia , Cardiomiopatias Diabéticas/metabolismo , Metabolismo Energético/efeitos dos fármacos , Glucosídeos/farmacologia , Liraglutida/farmacologia , Miocárdio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Citocinas/biossíntese , Cardiomiopatias Diabéticas/diagnóstico , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Modelos Animais de Doenças , Ecocardiografia , Ácidos Graxos/metabolismo , Fibrose , Glucose/metabolismo , Testes de Função Cardíaca , Hipoglicemiantes/farmacologia , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Ratos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
5.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34884633

RESUMO

Aberrant activation of the epidermal growth factor receptor (EGFR/ERBB1) by erythroblastic leukemia viral oncogene homolog (ERBB) ligands contributes to various tumor malignancies, including lung cancer and colorectal cancer (CRC). Epiregulin (EREG) is one of the EGFR ligands and is low expressed in most normal tissues. Elevated EREG in various cancers mainly activates EGFR signaling pathways and promotes cancer progression. Notably, a higher EREG expression level in CRC with wild-type Kirsten rat sarcoma viral oncogene homolog (KRAS) is related to better efficacy of therapeutic treatment. By contrast, the resistance of anti-EGFR therapy in CRC was driven by low EREG expression, aberrant genetic mutation and signal pathway alterations. Additionally, EREG overexpression in non-small cell lung cancer (NSCLC) is anticipated to be a therapeutic target for EGFR-tyrosine kinase inhibitor (EGFR-TKI). However, recent findings indicate that EREG derived from macrophages promotes NSCLC cell resistance to EGFR-TKI treatment. The emerging events of EREG-mediated tumor promotion signals are generated by autocrine and paracrine loops that arise from tumor epithelial cells, fibroblasts, and macrophages in the tumor microenvironment (TME). The TME is a crucial element for the development of various cancer types and drug resistance. The regulation of EREG/EGFR pathways depends on distinct oncogenic driver mutations and cell contexts that allows specific pharmacological targeting alone or combinational treatment for tailored therapy. Novel strategies targeting EREG/EGFR, tumor-associated macrophages, and alternative activation oncoproteins are under development or undergoing clinical trials. In this review, we summarize the clinical outcomes of EREG expression and the interaction of this ligand in the TME. The EREG/EGFR pathway may be a potential target and may be combined with other driver mutation targets to combat specific cancers.


Assuntos
Neoplasias do Colo/metabolismo , Epirregulina/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Epirregulina/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Terapia de Alvo Molecular , Mutação , Transdução de Sinais , Microambiente Tumoral
6.
Molecules ; 27(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35011333

RESUMO

Plant-parasitic nematodes cause severe losses to crop production and economies all over the world. Bacillus aryabhattai MCCC 1K02966, a deep-sea bacterium, was obtained from the Southwest Indian Ocean and showed nematicidal and fumigant activities against Meloidogyne incognita in vitro. The nematicidal volatile organic compounds (VOCs) from the fermentation broth of B. aryabhattai MCCC 1K02966 were investigated further using solid-phase microextraction gas chromatography-mass spectrometry. Four VOCs, namely, pentane, 1-butanol, methyl thioacetate, and dimethyl disulfide, were identified in the fermentation broth. Among these VOCs, methyl thioacetate exhibited multiple nematicidal activities, including contact nematicidal, fumigant, and repellent activities against M. incognita. Methyl thioacetate showed a significant contact nematicidal activity with 87.90% mortality at 0.01 mg/mL by 72 h, fumigant activity in mortality 91.10% at 1 mg/mL by 48 h, and repellent activity at 0.01-10 mg/mL. In addition, methyl thioacetate exhibited 80-100% egg-hatching inhibition on the 7th day over the range of 0.5 mg/mL to 5 mg/mL. These results showed that methyl thioacetate from MCCC 1K02966 control M. incognita with multiple nematicidal modes and can be used as a potential biological control agent.


Assuntos
Bacillus/metabolismo , Tylenchoidea/efeitos dos fármacos , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/farmacologia , Animais , Antinematódeos/química , Antinematódeos/farmacologia , Organismos Aquáticos , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Parasitária , Compostos Orgânicos Voláteis/análise , Microbiologia da Água
7.
Eur J Clin Invest ; 49(10): e13160, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31378929

RESUMO

BACKGROUND: A Pitx2c deficiency increases the risk of atrial fibrillation (AF). Atrial structural remodelling with fibrosis blocks electrical conduction and leads to arrhythmogenesis. A Pitx2c deficiency enhances profibrotic transforming growth factor (TGF)-ß expression and calcium dysregulation, suggesting that Pitx2c may play a role in atrial fibrosis. The purposes of this study were to evaluate whether a Pitx2c deficiency modulates cardiac fibroblast activity and study the underlying mechanisms. MATERIALS AND METHODS: A migration assay, proliferation analysis, Western blot analysis and calcium fluorescence imaging were conducted in Pitx2c-knockdown human atrial fibroblasts (HAFs) using short hairpin (sh)RNA or small interfering (si)RNA. RESULTS: Compared to control HAFs, Pitx2c-knockdown HAFs had a greater migration but a similar proliferative ability. Pitx2c-knockdown HAFs had a higher calcium influx with enhanced phosphorylation of calmodulin kinase II (CaMKII), α-smooth muscle actin and matrix metalloproteinase-2. In the presence of a CaMKII inhibitor (KN-93, 0.5 µmol/L), control and Pitx2c-knockdown HAFs exhibited similar migratory abilities. CONCLUSION: These findings suggest that downregulation of Pitx2c may regulate atrial fibrosis through modulating calcium homeostasis, which may contribute to its role in anti-atrial fibrosis, and Pitx2c downregulation may change the atrial electrophysiology and AF occurrence through modulating fibroblast activity.


Assuntos
Fibrilação Atrial/genética , Movimento Celular/genética , Proliferação de Células/genética , Fibroblastos/metabolismo , Átrios do Coração/citologia , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Actinas/metabolismo , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Fibrilação Atrial/metabolismo , Remodelamento Atrial/genética , Benzilaminas/farmacologia , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Movimento Celular/efeitos dos fármacos , Regulação para Baixo , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Fibrose/genética , Técnicas de Silenciamento de Genes , Átrios do Coração/patologia , Humanos , Técnicas In Vitro , Metaloproteinase 2 da Matriz/metabolismo , Imagem Óptica , Fosforilação , Isoformas de Proteínas , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno , Sulfonamidas/farmacologia , Proteína Homeobox PITX2
8.
Sensors (Basel) ; 19(20)2019 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-31635127

RESUMO

Combining research areas of biomechanics and pedestrian dead reckoning (PDR) provides a very promising way for pedestrian positioning in environments where Global Positioning System (GPS) signals are degraded or unavailable. In recent years, the PDR systems based on a smartphone's built-in inertial sensors have attracted much attention in such environments. However, smartphone-based PDR systems are facing various challenges, especially the heading drift, which leads to the phenomenon of estimated walking path passing through walls. In this paper, the 2D PDR system is implemented by using a pocket-worn smartphone, and then enhanced by introducing a map-matching algorithm that employs a particle filter to prevent the wall-crossing problem. In addition, to extend the PDR system for 3D applications, the smartphone's built-in barometer is used to measure the pressure variation associated to the pedestrian's vertical displacement. Experimental results show that the map-matching algorithm based on a particle filter can effectively solve the wall-crossing problem and improve the accuracy of indoor PDR. By fusing the barometer readings, the vertical displacement can be calculated to derive the floor transition information. Despite the inherent sensor noises and complex pedestrian movements, smartphone-based 3D pedestrian positioning systems have considerable potential for indoor location-based services (LBS).

9.
Biomacromolecules ; 19(3): 1037-1046, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29442497

RESUMO

Uniform poly(lactic acid)/cellulose nanocrystal (PLA/CNC) fibrous mats composed of either random or aligned fibers reinforced with up to 20 wt % CNCs were successfully produced by two different electrospinning processes. Various concentrations of CNCs could be stably dispersed in PLA solution prior to fiber manufacture. The microstructure of produced fibrous mats, regardless of random or aligned orientation, was transformed from smooth to nanoporous surface by changing CNC loading levels. Aligning process through secondary stretching during high-speed collection can also affect the porous structure of fibers. With the same CNC loading, fibrous mats produced with aligned fibers had higher degree of crystallinity than that of fibers with random structure. The thermal properties and mechanical performances of PLA/CNC fibrous mats can be enhanced, showing better enhancement effect of aligned fibrous structure. This results from a synergistic effect of the increased crystallinity of fibers, the efficient stress transfer from PLA to CNCs, and the ordered arrangement of electrospun fibers in the mats. This research paves a way for developing an electrospinning system that can manufacture high-performance CNC-enhanced PLA fibrous nanocomposites.


Assuntos
Nanocompostos/química , Nanofibras/química , Nanopartículas/química , Poliésteres/química , Nanocompostos/ultraestrutura , Nanofibras/ultraestrutura , Nanopartículas/ultraestrutura
10.
Int J Cancer ; 140(7): 1581-1596, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27925179

RESUMO

NEK2 (NIMA-related expressed kinase 2) is a serine/threonine centrosomal kinase that acts as a critical regulator of centrosome structure and function. Aberrant NEK2 activities lead to failure in regulating centrosome duplication. NEK2 overexpression promotes tumorigenesis and is associated with poor prognosis in several cancers. Increased NEK2 expression during the late pathological stage has been detected in the Oncomine liver dataset and hepatocellular carcinoma (HCC) specimens. Elevated NEK2 protein is associated with poor overall survival in patients with HCC. However, the precise roles and mechanisms of NEK2 in liver cancer progression remain largely unknown. An earlier functional study revealed that NEK2 mediates drug resistance (cisplatin or lipo-doxorubicin) via expression of an ABCC10 transporter. Active angiogenesis and metastasis underlie the rapid recurrence and poor survival of HCC. Results from the current study showed that NEK2 mediates tumor growth, metastasis and angiogenesis in vivo. NEK2-mediated drug resistance was blocked by a specific PI3K or AKT inhibitor. Moreover, NEK2 mediated liver cancer cell migration via pAKT/NF-κB signaling and matrix metalloproteinase (MMP) activation. Angiogenesis was induced via the same signaling pathway and IL-8 stimulation. Our findings collectively indicate that NEK2 modulates hepatoma cell functions, including growth, drug resistance, metastasis and angiogenesis via downstream genes activation.


Assuntos
Carcinoma Hepatocelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Quinases Relacionadas a NIMA/fisiologia , Idoso , Animais , Apoptose , Carcinogênese , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Centrossomo/metabolismo , Cisplatino/química , Progressão da Doença , Doxorrubicina/química , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Neovascularização Patológica , Prognóstico , RNA Interferente Pequeno/metabolismo , Resultado do Tratamento
11.
Tumour Biol ; 37(7): 9493-501, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26790437

RESUMO

Gastric cancer is an important health issue worldwide. Currently, improving the therapeutic efficacy of chemotherapy drugs is an important goal of cancer research. Alpha-7 nicotine acetylcholine receptor (A7-nAChR) is the key molecule that mediates gastric cancer progression, metastasis, and therapy responses; however, the role of A7-nAChR in the therapeutic efficacy of ixabepilone remains unclear. A7-nAChR expression was silenced by small interfering RNA (siRNA) technology. The cytotoxicity of ixabepilone was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and ixabepilone-induced apoptosis was analyzed by flow cytometry and annexin V/propidium iodide (PI) apoptotic assay. The expression patterns of anti-apoptotic proteins (AKT, phospho-AKT, Mcl-1, and Bcl-2) and pro-apoptotic proteins (Bad and Bax) were determined by western blot. Our study found that A7-nAChR knockdown (A7-nAChR-KD) AGS cells were more sensitive to ixabepilone administration than scrambled control AGS cells. We found that A7-nAChR knockdown enhanced ixabepilone-induced cell death as evidenced by the increased number of annexin V-positive (apoptotic) cells. After scrambled control and A7-nAChR-KD cells were treated with ixabepilone, we found that pAKT and AKT levels were significantly reduced in both groups of cells. The levels of Bcl-2 and the anti-apoptotic Mcl-1 isoform increased dramatically after ixabepilone treatment in scrambled control cells but not in A7-nAChR-KD cells. Bad and Bax levels did not change between the treatment group and vehicle group in both A7-nAChR-KD and scrambled control cells, whereas cleaved PARP levels dramatically increased in ixabepilone-treated A7-nAChR-KD cells. Our results demonstrated that knockdown of A7-nAChR enhanced the sensitivity of gastric cancer cells to ixabepilone administration. Thus, the A7-nAChR expression level in patients with gastric cancer may be a good indicator of ixabepilone sensitivity.


Assuntos
Adenocarcinoma/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Epotilonas/farmacologia , RNA Interferente Pequeno/genética , Neoplasias Gástricas/tratamento farmacológico , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Adenocarcinoma/genética , Adenocarcinoma/patologia , Apoptose/efeitos dos fármacos , Western Blotting , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Moduladores de Tubulina/farmacologia , Células Tumorais Cultivadas , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
12.
Tumour Biol ; 37(4): 4421-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26499946

RESUMO

Gastric cancer is difficult to cure because most patients are diagnosed at an advanced disease stage. Systemic chemotherapy remains an important therapy for gastric cancer, but both progression-free survival and disease-free survival associated with various combination regimens are limited because of refractoriness and chemoresistance. Accumulating evidence has revealed that the homomeric α7-nicotinic acetylcholine receptor (A7-nAChR) promotes human gastric cancer by driving cancer cell proliferation, migration, and metastasis. Therefore, A7-nAChR may serve as a potential therapeutic target for gastric cancer. However, the role of A7-nAChR in taxane therapy for gastric cancer was unclear. Cells were subjected to A7-nAChR knockdown (A7-nAChR KD) using short interfering RNA (siRNA). The anti-proliferative effects of taxane were assessed via 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL), and cell cycle distribution assays. A7-nAChR-KD cells exhibited low resistance to docetaxel and paclitaxel treatment, as measured by the MTT assay. Following paclitaxel treatment, the proportion of apoptotic cells was higher among A7-nAChR-KD cells than among scrambled control cells, as measured by cell cycle distribution and TUNEL assays. Further molecular analyses showed a reduction in the pAKT levels and a dramatic increase in the Bad levels in paclitaxel-treated A7-nAChR-KD cells but not in scrambled control cells. Following paclitaxel treatment, the level of Bax was slightly increased in both cell populations, whereas Poly (ADP-ribose) polymerase (PARP) cleavage was increased only in A7-nAChR-KD cells. These findings indicate that A7-nAChR-KD cells are more sensitive to paclitaxel treatment. We conclude that A7-nAChR may be a key biomarker for assessing the chemosensitivity of gastric cancer cells to taxane.


Assuntos
Antineoplásicos/farmacologia , Paclitaxel/farmacologia , Taxoides/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/fisiologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Docetaxel , Resistencia a Medicamentos Antineoplásicos , Técnicas de Silenciamento de Genes , Humanos , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , RNA Interferente Pequeno/genética , Transdução de Sinais , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo
13.
Tumour Biol ; 37(6): 8219-27, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26718209

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide. Cancer metastasis is a major obstacle in clinical cancer therapy. The mechanisms underlying the metastasis of HCC remain unclear. Glucose-regulated protein 94 (GRP94) is a key protein involved in mediating cancer progression, and it is highly expressed in HCC specimens. However, the role of GRP94 in cancer metastasis is unclear. A specific short hairpin RNA (shRNA) was employed to knock down GRP94 gene expression in HCC cell lines. Wound-healing migration, transwell migration, and invasion assays were performed to determine the migration and invasive ability of HCC cells. We demonstrated that silencing GRP94 inhibited HCC cell wound healing, migration, and invasion. Furthermore, our findings indicated that GRP94 knockdown might attenuate HCC cell metastasis by inhibiting CCT8/c-Jun/EMT signaling. Our study indicated that silencing GRP94 significantly reduced the migration and invasion abilities of HCC cells. Moreover, depleting GRP94 inhibited cell migration and invasion by downregulating CCT8/c-Jun signaling. Thus, our data suggest that the GRP94/CCT8/c-Jun/EMT signaling cascade might be a new therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular/genética , Chaperonina com TCP-1/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Proteínas de Choque Térmico HSP70/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Hepáticas/genética , Proteínas de Membrana/genética , Western Blotting , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/secundário , Linhagem Celular Tumoral , Ensaios de Migração Celular , Movimento Celular/genética , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Invasividade Neoplásica/genética , RNA Interferente Pequeno , Cicatrização/genética
14.
Tumour Biol ; 37(4): 4295-304, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26493996

RESUMO

Hepatocellular carcinoma (HCC) is a crucial health issue worldwide. High glucose-regulated protein 94 (GRP94) expression has been observed in different types of cancer, suggesting a link between tumor progression and GRP94 expression. However, the mechanisms underlying the role of GRP94 in HCC progression remain unclear. We used specific small hairpin RNA (shRNA) to manipulate GRP94 expression in HCC cells. Tissue arrays, MTT assays, xCELLigence assays, and in vivo xenograft model were performed to identify clinicopathological correlations and to analyze cell growth. We found that high GRP94 expression reflected a poor response and a lower survival rate. In vitro and in vivo studies showed that silencing GRP94 suppressed cancer progression. Mechanistically, GRP94 knockdown reduced AKT, phospho-AKT, and eNOS levels but did not influence the AMPK pathway. Our results demonstrated that GRP94 is a key molecule in HCC progression that modulates the AKT pathway and eNOS levels. Our findings suggest that GRP94 may be a new prognostic and therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Glicoproteínas de Membrana/genética , Óxido Nítrico Sintase Tipo III/biossíntese , Proteínas Proto-Oncogênicas c-akt/biossíntese , Proteínas Quinases Ativadas por AMP/biossíntese , Proteínas Quinases Ativadas por AMP/genética , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Glicoproteínas de Membrana/antagonistas & inibidores , Camundongos , Óxido Nítrico Sintase Tipo III/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Angew Chem Int Ed Engl ; 55(14): 4557-61, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26933933

RESUMO

Highly functionalized 4-bromo-1,2-dihydroisoquinolines were synthesized from readily available 4-(2-(bromomethyl)phenyl)-1-sulfonyl-1,2,3-triazoles. A bromonium ylide is proposed as the key intermediate, which can be formed by the intramolecular nucleophilic attack of the benzyl bromide on the α-imino rhodium carbene formed in the presence of the rhodium catalyst.

16.
Int J Cancer ; 137(1): 37-49, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25430639

RESUMO

The thyroid hormone, 3,3',5-triiodo-l-thyronine (T3 ), mediates several physiological processes, including embryonic development, cellular differentiation, metabolism and regulation of cell proliferation. Thyroid hormone (T3 ) and its receptor (TR) are involved in metabolism and growth. In addition to their developmental and metabolic functions, TRs play a tumor suppressor role, and therefore, their aberrant expression can lead to tumor transformation. Aberrant epigenetic silencing of tumor suppressor genes promotes cancer progression. The epigenetic regulator, Ubiquitin-like with PHD and ring finger domains 1 (UHRF1), is overexpressed in various cancers. In our study, we demonstrated that T3 negatively regulates UHRF1 expression, both in vitro and in vivo. Our results further indicate that UHRF1 regulation by T3 is indirect and mediated by Sp1. Sp1-binding elements of UHRF1 were identified at positions -664/-505 of the promoter region using the luciferase and chromatin immunoprecipitation assays. Notably, UHRF1 and Sp1 levels were elevated in subgroups of hepatocellular carcinoma patients and inversely correlated with TRα1 expression. Knockdown of UHRF1 expression should therefore provide a means to inhibit hepatoma cell proliferation. Expression of UHRF1 was downregulated by TRs, in turn, relieving silencing of the UHRF1 target gene, p21. Based on the collective findings, we propose that T3 /TR signaling induces hepatoma cell growth inhibition via UHRF1 repression.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Proliferação de Células/efeitos dos fármacos , Neoplasias Hepáticas/patologia , Receptores dos Hormônios Tireóideos/metabolismo , Tri-Iodotironina/farmacologia , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Regiões Promotoras Genéticas/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fator de Transcrição Sp1/metabolismo , Ubiquitina-Proteína Ligases
17.
Tumour Biol ; 36(7): 5063-70, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25669168

RESUMO

Glucose-regulated protein 78 (GRP78) is a key modulator of prostate cancer progression and therapeutic resistance. Prostate cancer is a worldwide health problem, and therapeutic resistance is a critical obstacle for the treatment of hormone-refractory prostate cancer patients. Shikonin inhibits prostate cancer proliferation and metastasis. However, the role of GRP78 in the cytotoxic effect of shikonin in prostate cancer cells remains unclear. GRP78 expression was abolished using small interfering RNA (siRNA), and the anticancer effects of shikonin were assessed using MTT assays, the XCELLigence biosensor, flow cytometric cell cycle analysis, and Annexin V-PI apoptotic assays. PC-3 cells expressed more GRP78 than DU-145 cells, and the MTT assays revealed that DU-145 cells were more sensitive to shikonin than PC-3 cells. GRP78 knockdown (GRP78KD) PC-3 cells were more sensitive to shikonin treatment than scrambled siRNA control cells. Based on cell cycle analysis and AnnexinV-PI apoptotic assays, apoptosis dramatically increased in GRP78KD cells compared with the control PC-3 in response to shikonin. Finally, in response to shikonin treatment, Mcl-1 and Bcl-2 levels increased in the scrambled control cells treated with shikonin, whereas Bcl-2 decreased and Mcl-1 slightly increased in the GRP78KD PC-3 cells. The levels of Bax and Bad did not change in the scrambled control or GRP78KD cells after shikonin treatment. These results are consistent with the increased sensitivity to shikonin after knockdown of GRP78. GRP78 expression may determine the therapeutic efficacy of shikonin against prostate cancer cells.


Assuntos
Proteínas de Choque Térmico/biossíntese , Naftoquinonas/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Apoptose/efeitos dos fármacos , Técnicas Biossensoriais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico/genética , Humanos , Masculino , Neoplasias da Próstata/patologia
18.
Tumour Biol ; 36(12): 9537-44, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26136123

RESUMO

Gastric cancer is the second most common cause of cancer mortality worldwide. Most gastric cancer patients are asymptomatic until the advanced stages, for which current therapeutic treatments are suboptimal. 5-Fluorouracil (5-FU), an antimetabolite agent, is widely used in gastric cancer therapy. However, the presence of drug resistance in gastric cancer patients reduces the cytotoxic activity of 5-FU. In gastric cancer, no research has yet been conducted to analyze the effect of alpha 7-nicotinic acetylcholine receptor (A7-nAChR) on the therapeutic response to 5-FU. In this study, we generated A7-nAChR knockdown (A7-nAChR-KD) AGS cells by a small interfering RNA (siRNA) technique in gastric cancer cells. The anti-proliferative effects of 5-FU were determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, a terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assay, and cell cycle determination. We found that A7-nAChR-KD cells were more resistant to 5-FU treatment compared with the scrambled control cells according to the MTT assay. The apoptotic cell population was increased more in scrambled control cells treated with 5-FU than A7-nAChR-KD cells according to the cell cycle distribution and TUNEL assays. We analyzed expression levels of survival and apoptosis-associated proteins (pAkt, Akt, Mcl-1, Bcl-2, Bad, and Bax) altered by 5-FU treatment. Survival and antiapoptosis signaling (pAkt, Akt, Mcl-1 and Bcl-2) was downregulated, and the proapoptotic proteins (Bad and Bax) were upregulated in 5-FU-treated control cells but expression levels of Bcl-2, Bad, and Bad were not altered in 5-FU-treated A7-nAChR-KD cells. This is consistent with A7-nAChR-KD cells exhibiting more resistance to 5-FU treatment. In our study, we carried out an in vitro study on AGS gastric cancer cell line to elucidate the anticancer efficacy and molecular mechanisms of A7-nAChR silencing on 5-FU-induced cell death. The results clearly showed that depletion of A7-nAChR suppressed the drug sensitivity of gastric cancer cells to 5-FU treatment.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/administração & dosagem , Neoplasias Gástricas/tratamento farmacológico , Receptor Nicotínico de Acetilcolina alfa7/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas c-bcl-2 , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores
19.
Cell Mol Life Sci ; 70(11): 1915-36, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22955376

RESUMO

The thyroid hormone 3,3',5-triiodo-L-thyronine (T3) mediates several physiological processes, including embryonic development, cellular differentiation, metabolism, and the regulation of cell proliferation. Thyroid hormone receptors (TRs) generally act as heterodimers with the retinoid X receptor (RXR) to regulate target genes. In addition to their developmental and metabolic functions, TRs have been shown to play a tumor suppressor role, suggesting that their aberrant expression can lead to tumor transformation. Conversely, recent reports have shown an association between overexpression of wild-type TRs and tumor metastasis. Signaling crosstalk between T3/TR and other pathways or specific TR coregulators appear to affect tumor development. Since TR actions are complex as well as cell context-, tissue- and time-specific, aberrant expression of the various TR isoforms has different effects during diverse tumorigenesis. Therefore, elucidation of the T3/TR signaling mechanisms in cancers should facilitate the identification of novel therapeutic targets. This review provides a summary of recent studies focusing on the role of TRs in hepatocellular carcinomas (HCCs).


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Receptores dos Hormônios Tireóideos/fisiologia , Tri-Iodotironina/fisiologia , Carcinoma Hepatocelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Modelos Genéticos , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Transdução de Sinais , Tri-Iodotironina/genética , Tri-Iodotironina/metabolismo
20.
Environ Monit Assess ; 186(2): 791-804, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24105123

RESUMO

Surface data of meteorological parameters (wind speed, wind direction, and mixing height) and air pollutant concentrations (O3, NO, and NO2) were collected for a 92-day period associated with typhoon formation in 2005. The influence of typhoons on O3 concentration were defined by azimuth and distance from Taiwan, and Types A, B, and C correspond to typhoons less than 1,500 km from Taiwan and located between azimuths 45° and 135°, 135° and 225°, and 225° and 45°, respectively. Type D corresponds to typhoons more than 1,500 km from Taiwan. Titration reactions were conducted at three temporal phases: 2000-0700, 0800-1100, and 1200-1400 LST (Local Standard Time). The air pollution model (TAPM) was used to simulate wind fields and trajectories of air masses. It was determined that typhoon position affected O3 concentration, temporal and spatial patterns of O3 titration and vertical meteorological characteristics, which were not all at the statistically significant level.


Assuntos
Poluentes Atmosféricos/análise , Tempestades Ciclônicas , Monitoramento Ambiental , Ozônio/análise , Poluição do Ar/estatística & dados numéricos , Estações do Ano , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA