Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
PLoS Biol ; 17(3): e3000157, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30845142

RESUMO

Neurosteroids are endogenous modulators of neuronal excitability and nervous system development and are being developed as anesthetic agents and treatments for psychiatric diseases. While gamma amino-butyric acid Type A (GABAA) receptors are the primary molecular targets of neurosteroid action, the structural details of neurosteroid binding to these proteins remain ill defined. We synthesized neurosteroid analogue photolabeling reagents in which the photolabeling groups were placed at three positions around the neurosteroid ring structure, enabling identification of binding sites and mapping of neurosteroid orientation within these sites. Using middle-down mass spectrometry (MS), we identified three clusters of photolabeled residues representing three distinct neurosteroid binding sites in the human α1ß3 GABAA receptor. Novel intrasubunit binding sites were identified within the transmembrane helical bundles of both the α1 (labeled residues α1-N408, Y415) and ß3 (labeled residue ß3-Y442) subunits, adjacent to the extracellular domains (ECDs). An intersubunit site (labeled residues ß3-L294 and G308) in the interface between the ß3(+) and α1(-) subunits of the GABAA receptor pentamer was also identified. Computational docking studies of neurosteroid to the three sites predicted critical residues contributing to neurosteroid interaction with the GABAA receptors. Electrophysiological studies of receptors with mutations based on these predictions (α1-V227W, N408A/Y411F, and Q242L) indicate that both the α1 intrasubunit and ß3-α1 intersubunit sites are critical for neurosteroid action.


Assuntos
Proteínas de Membrana/metabolismo , Receptores de GABA/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Eletrofisiologia , Feminino , Citometria de Fluxo , Humanos , Espectrometria de Massas , Simulação de Acoplamento Molecular , Muscimol/metabolismo , Neurotransmissores/metabolismo , Oócitos/metabolismo , Xenopus laevis
2.
Anal Chem ; 92(9): 6622-6630, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32250604

RESUMO

Native mass spectrometry (MS) provides the capacity to monitor membrane protein complexes and noncovalent binding of ligands and lipids to membrane proteins. The charge states produced by native MS of membrane proteins often result in gas-phase protein unfolding or loss of noncovalent interactions. In an effort to reduce the charge of membrane proteins, we examined the utility of alkali metal salts as a charge-reducing agent. Low concentrations of alkali metal salts caused marked charge reduction in the membrane protein, Erwinia ligand-gated ion channel (ELIC). The charge-reducing effect only occurred for membrane proteins and was detergent-dependent, being most pronounced in long polyethylene glycol (PEG)-based detergents such as C10E5 and C12E8. On the basis of these results, we propose a mechanism for alkali metal charge reduction of membrane proteins. Addition of low concentrations of alkali metals may provide an advantageous approach for charge reduction of detergent-solubilized membrane proteins by native MS.


Assuntos
Acetatos/química , Glutamato Desidrogenase/química , Proteínas de Membrana/química , Metais Alcalinos/química , Piruvato Quinase/química , Animais , Bovinos , Detergentes/química , Glutamato Desidrogenase/metabolismo , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Oxirredução , Piruvato Quinase/metabolismo , Coelhos , Sais/química , Solubilidade
3.
J Biol Chem ; 293(8): 3013-3027, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29301936

RESUMO

Neurosteroids are endogenous sterols that potentiate or inhibit pentameric ligand-gated ion channels (pLGICs) and can be effective anesthetics, analgesics, or anti-epileptic drugs. The complex effects of neurosteroids on pLGICs suggest the presence of multiple binding sites in these receptors. Here, using a series of novel neurosteroid-photolabeling reagents combined with top-down and middle-down mass spectrometry, we have determined the stoichiometry, sites, and orientation of binding for 3α,5α-pregnane neurosteroids in the Gloeobacter ligand-gated ion channel (GLIC), a prototypic pLGIC. The neurosteroid-based reagents photolabeled two sites per GLIC subunit, both within the transmembrane domain; one site was an intrasubunit site, and the other was located in the interface between subunits. By using reagents with photoreactive groups positioned throughout the neurosteroid backbone, we precisely map the orientation of neurosteroid binding within each site. Amino acid substitutions introduced at either site altered neurosteroid modulation of GLIC channel activity, demonstrating the functional role of both sites. These results provide a detailed molecular model of multisite neurosteroid modulation of GLIC, which may be applicable to other mammalian pLGICs.


Assuntos
Proteínas de Bactérias/metabolismo , Desoxicorticosterona/análogos & derivados , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Modelos Moleculares , Neurotransmissores/metabolismo , Pregnanos/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Cianobactérias , Desoxicorticosterona/química , Desoxicorticosterona/metabolismo , Hidroxilação , Cinética , Canais Iônicos de Abertura Ativada por Ligante/química , Canais Iônicos de Abertura Ativada por Ligante/genética , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Neurotransmissores/química , Marcadores de Fotoafinidade/química , Mutação Puntual , Pregnanos/química , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
4.
J Biol Chem ; 292(22): 9294-9304, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28396346

RESUMO

Voltage-dependent anion channel-1 (VDAC1) is a highly regulated ß-barrel membrane protein that mediates transport of ions and metabolites between the mitochondria and cytosol of the cell. VDAC1 co-purifies with cholesterol and is functionally regulated by cholesterol, among other endogenous lipids. Molecular modeling studies based on NMR observations have suggested five cholesterol-binding sites in VDAC1, but direct experimental evidence for these sites is lacking. Here, to determine the sites of cholesterol binding, we photolabeled purified mouse VDAC1 (mVDAC1) with photoactivatable cholesterol analogues and analyzed the photolabeled sites with both top-down mass spectrometry (MS), and bottom-up MS paired with a clickable, stable isotope-labeled tag, FLI-tag. Using cholesterol analogues with a diazirine in either the 7 position of the steroid ring (LKM38) or the aliphatic tail (KK174), we mapped a binding pocket in mVDAC1 localized to Thr83 and Glu73, respectively. When Glu73 was mutated to a glutamine, KK174 no longer photolabeled this residue, but instead labeled the nearby Tyr62 within this same binding pocket. The combination of analytical strategies employed in this work permits detailed molecular mapping of a cholesterol-binding site in a protein, including an orientation of the sterol within the site. Our work raises the interesting possibility that cholesterol-mediated regulation of VDAC1 may be facilitated through a specific binding site at the functionally important Glu73 residue.


Assuntos
Colesterol/química , Canal de Ânion 1 Dependente de Voltagem/química , Marcadores de Afinidade , Animais , Sítios de Ligação , Camundongos , Ressonância Magnética Nuclear Biomolecular , Canal de Ânion 1 Dependente de Voltagem/genética
5.
Anal Chem ; 89(4): 2636-2644, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28194953

RESUMO

Identifying sites of protein-ligand interaction is important for structure-based drug discovery and understanding protein structure-function relationships. Mass spectrometry (MS) has emerged as a useful tool for identifying residues covalently modified by ligands. Current methods use database searches that are dependent on acquiring interpretable fragmentation spectra (MS2) of peptide-ligand adducts. This is problematic for identifying sites of hydrophobic ligand incorporation in integral membrane proteins (IMPs), where poor aqueous solubility and ionization of peptide-ligand adducts and collision-induced adduct loss hinder the acquisition of quality MS2 spectra. To address these issues, we developed a fast ligand identification (FLI) tag that can be attached to any alkyne-containing ligand via Cu(I)-catalyzed cycloaddition. The FLI tag adds charge to increase solubility and ionization, and utilizes stable isotope labeling for MS1 level identification of hydrophobic peptide-ligand adducts. The FLI tag was coupled to an alkyne-containing neurosteroid photolabeling reagent and used to identify peptide-steroid adducts in MS1 spectra via the stable heavy isotope pair. Peptide-steroid adducts were not identified in MS2-based database searches because collision-induced adduct loss was the dominant feature of collision-induced dissociation (CID) fragmentation, but targeted analysis of MS1 pairs using electron transfer dissociation (ETD) markedly reduced adduct loss. Using the FLI tag and ETD, we identified Glu73 as the site of photoincorporation of our neurosteroid ligand in the IMP, mouse voltage-dependent anion channel-1 (mVDAC1), and top-down MS confirmed a single site of photolabeling.


Assuntos
Ligantes , Peptídeos/química , Espectrometria de Massas em Tandem , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Alcinos/química , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Química Click , Interações Hidrofóbicas e Hidrofílicas , Marcação por Isótopo , Camundongos , Peptídeos/metabolismo , Solubilidade , Raios Ultravioleta , Canal de Ânion 1 Dependente de Voltagem/química
6.
J Biol Chem ; 288(23): 16726-16737, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23564459

RESUMO

Kir2.1 channels are uniquely activated by phosphoinositide 4,5-bisphosphate (PI(4,5)P2) and can be inhibited by other phosphoinositides (PIPs). Using biochemical and computational approaches, we assess PIP-channel interactions and distinguish residues that are energetically critical for binding from those that alter PIP sensitivity by shifting the open-closed equilibrium. Intriguingly, binding of each PIP is disrupted by a different subset of mutations. In silico ligand docking indicates that PIPs bind to two sites. The second minor site may correspond to the secondary anionic phospholipid site required for channel activation. However, 96-99% of PIP binding localizes to the first cluster, which corresponds to the general PI(4,5)P2 binding location in recent Kir crystal structures. PIPs can encompass multiple orientations; each di- and triphosphorylated species binds with comparable energies and is favored over monophosphorylated PIPs. The data suggest that selective activation by PI(4,5)P2 involves orientational specificity and that other PIPs inhibit this activation through direct competition.


Assuntos
Simulação de Acoplamento Molecular , Fosfatidilinositol 4,5-Difosfato/química , Canais de Potássio Corretores do Fluxo de Internalização/química , Sítios de Ligação , Cristalografia por Raios X , Humanos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ligação Proteica/fisiologia
7.
Proc Natl Acad Sci U S A ; 108(13): 5272-7, 2011 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-21402935

RESUMO

Structures of the prokaryotic K(+) channel, KcsA, highlight the role of the selectivity filter carbonyls from the GYG signature sequence in determining a highly selective pore, but channels displaying this sequence vary widely in their cation selectivity. Furthermore, variable selectivity can be found within the same channel during a process called C-type inactivation. We investigated the mechanism for changes in selectivity associated with inactivation in a model K(+) channel, KcsA. We found that E71A, a noninactivating KcsA mutant in which a hydrogen-bond behind the selectivity filter is disrupted, also displays decreased K(+) selectivity. In E71A channels, Na(+) permeates at higher rates as seen with and flux measurements and analysis of intracellular Na(+) block. Crystal structures of E71A reveal that the selectivity filter no longer assumes the "collapsed," presumed inactivated, conformation in low K(+), but a "flipped" conformation, that is also observed in high K(+), high Na(+), and even Na(+) only conditions. The data reveal the importance of the E71-D80 interaction in both favoring inactivation and maintaining high K(+) selectivity. We propose a molecular mechanism by which inactivation and K(+) selectivity are linked, a mechanism that may also be at work in other channels containing the canonical GYG signature sequence.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ativação do Canal Iônico , Canais de Potássio/química , Canais de Potássio/metabolismo , Conformação Proteica , Proteínas de Bactérias/genética , Modelos Moleculares , Dados de Sequência Molecular , Potássio/metabolismo , Canais de Potássio/genética , Radioisótopos de Rubídio/química , Radioisótopos de Rubídio/metabolismo , Radioisótopos de Sódio , Difração de Raios X
8.
Nat Commun ; 15(1): 25, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167383

RESUMO

Lipid nanodiscs have become a standard tool for studying membrane proteins, including using single particle cryo-electron microscopy (cryo-EM). We find that reconstituting the pentameric ligand-gated ion channel (pLGIC), Erwinia ligand-gated ion channel (ELIC), in different nanodiscs produces distinct structures by cryo-EM. The effect of the nanodisc on ELIC structure extends to the extracellular domain and agonist binding site. Additionally, molecular dynamic simulations indicate that nanodiscs of different size impact ELIC structure and that the nanodisc scaffold directly interacts with ELIC. These findings suggest that the nanodisc plays a crucial role in determining the structure of pLGICs, and that reconstitution of ion channels in larger nanodiscs may better approximate a lipid membrane environment.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante , Canais Iônicos de Abertura Ativada por Ligante/química , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Sítios de Ligação , Lipídeos
9.
Nat Commun ; 14(1): 1077, 2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841877

RESUMO

Tandem pore domain (K2P) potassium channels modulate resting membrane potentials and shape cellular excitability. For the mechanosensitive subfamily of K2Ps, the composition of phospholipids within the bilayer strongly influences channel activity. To examine the molecular details of K2P lipid modulation, we solved cryo-EM structures of the TREK1 K2P channel bound to either the anionic lipid phosphatidic acid (PA) or the zwitterionic lipid phosphatidylethanolamine (PE). At the extracellular face of TREK1, a PA lipid inserts its hydrocarbon tail into a pocket behind the selectivity filter, causing a structural rearrangement that recapitulates mutations and pharmacology known to activate TREK1. At the cytoplasmic face, PA and PE lipids compete to modulate the conformation of the TREK1 TM4 gating helix. Our findings demonstrate two distinct pathways by which anionic lipids enhance TREK1 activity and provide a framework for a model that integrates lipid gating with the effects of other mechanosensitive K2P modulators.


Assuntos
Canais de Potássio de Domínios Poros em Tandem , Canais de Potássio de Domínios Poros em Tandem/genética , Fosfolipídeos , Potenciais da Membrana , Potássio/metabolismo
10.
Nat Commun ; 13(1): 7017, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36385237

RESUMO

Pentameric ligand-gated ion channels (pLGICs) mediate synaptic transmission and are sensitive to their lipid environment. The mechanism of phospholipid modulation of any pLGIC is not well understood. We demonstrate that the model pLGIC, ELIC (Erwinia ligand-gated ion channel), is positively modulated by the anionic phospholipid, phosphatidylglycerol, from the outer leaflet of the membrane. To explore the mechanism of phosphatidylglycerol modulation, we determine a structure of ELIC in an open-channel conformation. The structure shows a bound phospholipid in an outer leaflet site, and structural changes in the phospholipid binding site unique to the open-channel. In combination with streamlined alchemical free energy perturbation calculations and functional measurements in asymmetric liposomes, the data support a mechanism by which an anionic phospholipid stabilizes the activated, open-channel state of a pLGIC by specific, state-dependent binding to this site.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante , Canais Iônicos de Abertura Ativada por Ligante/química , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Fosfolipídeos , Sítios de Ligação , Fosfatidilgliceróis , Lipossomos
11.
Biophys J ; 100(3): 620-628, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21281576

RESUMO

The lipid bilayer is a critical determinant of ion channel activity; however, efforts to define the lipid dependence of channel function have generally been limited to cellular expression systems in which the membrane composition cannot be fully controlled. We reconstituted purified human Kir2.1 and Kir2.2 channels into liposomes of defined composition to study their phospholipid dependence of activity using (86)Rb(+) flux and patch-clamp assays. Our results demonstrate that Kir2.1 and Kir2.2 have two distinct lipid requirements for activity: a specific requirement for phosphatidylinositol 4,5-bisphosphate (PIP(2)) and a nonspecific requirement for anionic phospholipids. Whereas we previously showed that PIP(2) increases the channel open probability, in this work we find that activation by POPG increases both the open probability and unitary conductance. Oleoyl CoA potently inhibits Kir2.1 by antagonizing the specific requirement for PIP(2), and EPC appears to antagonize activation by the nonspecific anionic requirement. Phosphatidylinositol phosphates can act on both lipid requirements, yielding variable and even opposite effects on Kir2.1 activity depending on the lipid background. Mutagenesis experiments point to the role of intracellular residues in activation by both PIP(2) and anionic phospholipids. In conclusion, we utilized purified proteins in defined lipid membranes to quantitatively determine the phospholipid requirements for human Kir channel activity.


Assuntos
Fosfolipídeos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Acil Coenzima A/farmacologia , Aminoácidos/metabolismo , Animais , Ânions , Bovinos , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Fosfatidilcolinas/farmacologia , Fosfatidilgliceróis/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores
12.
J Biol Chem ; 285(48): 37129-32, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-20921230

RESUMO

Many ion channels are modulated by phosphatidylinositol 4,5-bisphosphate (PIP(2)), but studies examining the PIP(2) dependence of channel activity have been limited to cell expression systems, which present difficulties for controlling membrane composition. We have characterized the PIP(2) dependence of purified human Kir2.1 and Kir2.2 activity using (86)Rb(+) flux and patch clamp assays in liposomes of defined composition. We definitively show that these channels are directly activated by PIP(2) and that PIP(2) is absolutely required in the membrane for channel activity. The results provide the first quantitative description of the dependence of eukaryotic Kir channel function on PIP(2) levels in the membrane; Kir2.1 shows measureable activity in as little as 0.01% PIP(2), and open probability increases to ∼0.4 at 1% PIP(2). Activation of Kir2.1 by phosphatidylinositol phosphates is also highly selective for PIP(2); PI, PI(4)P, and PI(5)P do not activate channels, and PI(3,4,5)P(3) causes minimal activity. The PIP(2) dependence of eukaryotic Kir activity is almost exactly opposite that of KirBac1.1, which shows marked inhibition by PIP(2). This raises the interesting hypothesis that PIP(2) activation of eukaryotic channels reflects an evolutionary adaptation of the channel to the appearance of PIP(2) in the eukaryotic cell membrane.


Assuntos
Membrana Celular/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Membrana Celular/química , Membrana Celular/genética , Humanos , Conformação Molecular , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Front Physiol ; 12: 798102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069257

RESUMO

Lipids modulate the function of many ion channels, possibly through direct lipid-protein interactions. The recent outpouring of ion channel structures by cryo-EM has revealed many lipid binding sites. Whether these sites mediate lipid modulation of ion channel function is not firmly established in most cases. However, it is intriguing that many of these lipid binding sites are also known sites for other allosteric modulators or drugs, supporting the notion that lipids act as endogenous allosteric modulators through these sites. Here, we review such lipid-drug binding sites, focusing on pentameric ligand-gated ion channels and transient receptor potential channels. Notable examples include sites for phospholipids and sterols that are shared by anesthetics and vanilloids. We discuss some implications of lipid binding at these sites including the possibility that lipids can alter drug potency or that understanding protein-lipid interactions can guide drug design. Structures are only the first step toward understanding the mechanism of lipid modulation at these sites. Looking forward, we identify knowledge gaps in the field and approaches to address them. These include defining the effects of lipids on channel function in reconstituted systems using asymmetric membranes and measuring lipid binding affinities at specific sites using native mass spectrometry, fluorescence binding assays, and computational approaches.

14.
Sci Transl Med ; 13(597)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108247

RESUMO

Nitrous oxide at 50% inhaled concentration has been shown to improve depressive symptoms in patients with treatment-resistant major depression (TRMD). Whether a lower concentration of 25% nitrous oxide provides similar efficacy and persistence of antidepressant effects while reducing the risk of adverse side effects is unknown. In this phase 2 clinical trial (NCT03283670), 24 patients with severe TRMD were randomly assigned in a crossover fashion to three treatments consisting of a single 1-hour inhalation with (i) 50% nitrous oxide, (ii) 25% nitrous oxide, or (iii) placebo (air/oxygen). The primary outcome was the change on the Hamilton Depression Rating Scale (HDRS-21). Whereas nitrous oxide significantly improved depressive symptoms versus placebo (P = 0.01), there was no difference between 25 and 50% nitrous oxide (P = 0.58). The estimated differences between 25% and placebo were -0.75 points on the HDRS-21 at 2 hours (P = 0.73), -1.41 points at 24 hours (P = 0.52), -4.35 points at week 1 (P = 0.05), and -5.19 points at week 2 (P = 0.02), and the estimated differences between 50% and placebo were -0.87 points at 2 hours (P = 0.69), -1.93 points at 24 hours (P = 0.37), -2.44 points at week 1 (P = 0.25), and -7.00 points at week 2 (P = 0.001). Adverse events declined substantially with dose (P < 0.001). These results suggest that 25% nitrous oxide has comparable efficacy to 50% nitrous oxide in improving TRMD but with a markedly lower rate of adverse effects.


Assuntos
Transtorno Depressivo Maior , Óxido Nitroso , Antidepressivos/uso terapêutico , Depressão , Transtorno Depressivo Maior/tratamento farmacológico , Método Duplo-Cego , Humanos , Óxido Nitroso/uso terapêutico , Resultado do Tratamento
15.
Protein Expr Purif ; 71(1): 115-21, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20064617

RESUMO

The inward rectifier family of potassium (KCNJ) channels regulate vital cellular processes including cell volume, electrical excitability, and insulin secretion. Dysfunction of different isoforms have been linked to numerous diseases including Bartter's, Andersen-Tawil, Smith-Magenis Syndromes, Type II diabetes mellitus, and epilepsy, making them important targets for therapeutic intervention. Using a family-based approach, we succeeded in expressing 10 of 11 human KCNJ channels tested in Saccharomyces cerevisiae. GFP-fusion proteins showed that these channels traffic correctly to the plasma-membrane suggesting that the protein is functional. A 2-step purification process can be used to purify the KCNJ channels to >95% purity in a mono-dispersed form. After incorporation into liposomes, (86)Rb(+) flux assays confirm the functionality of the purified proteins as inward rectifier potassium channels.


Assuntos
Bioquímica/métodos , Canais de Potássio Corretores do Fluxo de Internalização/isolamento & purificação , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Clonagem Molecular , Humanos , Transporte Proteico , Frações Subcelulares/metabolismo
16.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(2): 128-136, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30471426

RESUMO

Cholesterol is an essential component of cell membranes, and is required for mammalian pentameric ligand-gated ion channel (pLGIC) function. Computational studies suggest direct interactions between cholesterol and pLGICs but experimental evidence identifying specific binding sites is limited. In this study, we mapped cholesterol binding to Gloeobacter ligand-gated ion channel (GLIC), a model pLGIC chosen for its high level of expression, existing crystal structure, and previous use as a prototypic pLGIC. Using two cholesterol analogue photolabeling reagents with the photoreactive moiety on opposite ends of the sterol, we identified two cholesterol binding sites: an intersubunit site between TM3 and TM1 of adjacent subunits and an intrasubunit site between TM1 and TM4. In both the inter- and intrasubunit sites, cholesterol is oriented such that the 3­OH group points toward the center of the transmembrane domains rather than toward either the cytosolic or extracellular surfaces. We then compared this binding to that of the cholesterol metabolite, allopregnanolone, a neurosteroid that allosterically modulates pLGICs. The same binding pockets were identified for allopregnanolone and cholesterol, but the binding orientation of the two ligands was markedly different, with the 3­OH group of allopregnanolone pointing to the intra- and extracellular termini of the transmembrane domains rather than to their centers. We also found that cholesterol increases, whereas allopregnanolone decreases the thermal stability of GLIC. These data indicate that cholesterol and neurosteroids bind to common hydrophobic pockets in the model pLGIC, GLIC, but that their effects depend on the orientation and specific molecular interactions unique to each sterol.


Assuntos
Colesterol/metabolismo , Canais Iônicos de Abertura Ativada por Ligante/fisiologia , Neurotransmissores/metabolismo , Sítios de Ligação/fisiologia , Membrana Celular/metabolismo , Colesterol/fisiologia , Cianobactérias/metabolismo , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Ligantes , Modelos Moleculares , Neurotransmissores/fisiologia , Marcadores de Fotoafinidade/metabolismo , Pregnanolona/metabolismo , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia
17.
J Steroid Biochem Mol Biol ; 192: 105383, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31150831

RESUMO

Neurosteroids positively modulate GABA-A receptor (GABAAR) channel activity by binding to a transmembrane domain intersubunit site. Understanding the interactions in this site that determine neurosteroid binding and its effect is essential for the design of neurosteroid-based therapeutics. Using photo-affinity labeling and an ELIC-α1GABAAR chimera, we investigated the impact of mutations (Q242L, Q242W and W246L) within the intersubunit site on neurosteroid binding. These mutations, which abolish the thermal stabilizing effect of allopregnanolone on the chimera, reduce neither photolabeling within the intersubunit site nor competitive prevention of labeling by allopregnanolone. Instead, these mutations change the orientation of neurosteroid photolabeling. Molecular docking of allopregnanolone in WT and Q242W receptors confirms that the mutation favors re-orientation of allopregnanolone within the binding pocket. Collectively, the data indicate that mutations at Gln242 or Trp246 that eliminate neurosteroid effects do not eliminate neurosteroid binding within the intersubunit site, but significantly alter the preferred orientation of the neurosteroid within the site. The interactions formed by Gln242 and Trp246 within this pocket play a vital role in determining the orientation of the neurosteroid that may be necessary for its functional effect.


Assuntos
Neuroesteroides/química , Neuroesteroides/metabolismo , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Glutamina/química , Glutamina/genética , Glutamina/metabolismo , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Domínios Proteicos , Receptores de GABA-A/genética , Homologia de Sequência , Triptofano/química , Triptofano/genética , Triptofano/metabolismo
18.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(10): 1269-1279, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31176038

RESUMO

Voltage-dependent anion channel-1 (VDAC1) is a mitochondrial porin that is implicated in cellular metabolism and apoptosis, and modulated by numerous small molecules including lipids. VDAC1 binds sterols, including cholesterol and neurosteroids such as allopregnanolone. Biochemical and computational studies suggest that VDAC1 binds multiple cholesterol molecules, but photolabeling studies have identified only a single cholesterol and neurosteroid binding site at E73. To identify all the binding sites of neurosteroids in VDAC1, we apply photo-affinity labeling using two sterol-based photolabeling reagents with complementary photochemistry: 5α-6-AziP which contains an aliphatic diazirine, and KK200 which contains a trifluoromethyl-phenyldiazirine (TPD) group. 5α-6-AziP and KK200 photolabel multiple residues within an E73 pocket confirming the presence of this site and mapping sterol orientation within this pocket. In addition, KK200 photolabels four other sites consistent with the finding that VDAC1 co-purifies with five cholesterol molecules. Both allopregnanolone and cholesterol competitively prevent photolabeling at E73 and three other sites indicating that these are common sterol binding sites shared by both neurosteroids and cholesterol. Binding at the functionally important residue E73 suggests a possible role for sterols in regulating VDAC1 signaling and interaction with partner proteins.


Assuntos
Colesterol/metabolismo , Neuroesteroides/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Camundongos , Modelos Moleculares , Ligação Proteica , Canal de Ânion 1 Dependente de Voltagem/química
19.
Methods Mol Biol ; 720: 113-26, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21318869

RESUMO

Polyamine blockade of inwardly rectifying potassium (Kir) channels underlies their steep voltage--dependence observed in native cells. The structural determinants of polyamine blockade and the structure-activity profile of endogenous polyamines requires specialized methodology for characterizing polyamine interactions with Kir channels. Recent identification and growing interest in the structure and function of prokaryotic Kir channels (KirBacs) has driven the development of new techniques for measuring ion channel activity. Several methods for measuring polyamine interactions with prokaryotic and eukaryotic Kir channels are discussed.


Assuntos
Técnicas de Patch-Clamp/métodos , Poliaminas/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Animais , Células COS , Chlorocebus aethiops , Lipossomos/metabolismo , Células Procarióticas/metabolismo
20.
Channels (Austin) ; 4(3): 139-41, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21150302

RESUMO

Many eukaryotic channels, transporters and receptors are activated by phosphatidyl inositol bisphosphate (PIP(2)) in the membrane, and every member of the eukaryotic inward rectifier potassium (Kir) channel family requires membrane PIP(2) for activity. In contrast, a bacterial homolog (KirBac1.1) is specifically inhibited by PIP(2). We speculate that a key evolutionary adaptation in eukaryotic channels is the insertion of additional linkers between transmembrane and cytoplasmic domains, revealed by new crystal structures, that convert PIP(2) inhibition to activation. Such an adaptation may reflect a novel evolutionary drive to protein structure, and that was necessary to permit channel function within the highly negatively charged membranes that evolved in the eukaryotic lineage.


Assuntos
Evolução Molecular , Lipídeos de Membrana/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/química , Proteínas de Bactérias/química , Eucariotos/química , Canais de Potássio Corretores do Fluxo de Internalização/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA