Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38906827

RESUMO

BACKGROUND: Elizabethkingia spp. are emerging as nosocomial pathogens causing various infections. These pathogens express resistance to a broad range of antibiotics, thus requiring antimicrobial combinations for coverage. However, possible antagonistic interactions between antibiotics have not been thoroughly explored. This study aimed to evaluate the effectiveness of antimicrobial combinations against Elizabethkingia infections, focusing on their impact on pathogenicity, including biofilm production and cell adhesion. METHODS: Double-disc diffusion, time-kill, and chequerboard assays were used for evaluating the combination effects of antibiotics against Elizabethkingia spp. We further examined the antagonistic effects of antibiotic combinations on biofilm formation and adherence to A549 human respiratory epithelial cells. Further validation of the antibiotic interactions and their implications was performed using ex vivo hamster precision-cut lung sections (PCLSs) to mimic in vivo conditions. RESULTS: Antagonistic effects were observed between cefoxitin, imipenem and amoxicillin/clavulanic acid in combination with vancomycin. The antagonism of imipenem toward vancomycin was specific to its effects on the genus Elizabethkingia. Imipenem further hampered the bactericidal effect of vancomycin and impaired its inhibition of biofilm formation and the adhesion of Elizabethkingia meningoseptica ATCC 13253 to human cells. In the ex vivo PCLS model, vancomycin exhibited dose-dependent bactericidal effects; however, the addition of imipenem also reduced the effect of vancomycin. CONCLUSIONS: Imipenem reduced the bactericidal efficacy of vancomycin against Elizabethkingia spp. and compromised its capacity to inhibit biofilm formation, thereby enhancing bacterial adhesion. Clinicians should be aware of the potential issues with the use of these antibiotic combinations when treating Elizabethkingia infections.

2.
J Antimicrob Chemother ; 74(6): 1503-1510, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30830171

RESUMO

BACKGROUND: MDR Elizabethkingia anophelis strains are implicated in an increasing number of healthcare-associated infections worldwide, including a recent cluster of E. anophelis infections in the Midwestern USA associated with significant morbidity and mortality. However, there is minimal information on the antimicrobial susceptibilities of E. anophelis strains or their antimicrobial resistance to carbapenems and fluoroquinolones. OBJECTIVES: Our aim was to examine the susceptibilities and genetic profiles of clinical isolates of E. anophelis from our hospital, characterize their carbapenemase genes and production of MBLs, and determine the mechanism of fluoroquinolone resistance. METHODS: A total of 115 non-duplicated isolates of E. anophelis were examined. MICs of antimicrobial agents were determined using the Sensititre 96-well broth microdilution panel method. QRDR mutations and MBL genes were identified using PCR. MBL production was screened for using a combined disc test. RESULTS: All E. anophelis isolates harboured the blaGOB and blaB genes with resistance to carbapenems. Antibiotic susceptibility testing indicated different resistance patterns to ciprofloxacin and levofloxacin in most isolates. Sequencing analysis confirmed that a concurrent GyrA amino acid substitution (Ser83Ile or Ser83Arg) in the hotspots of respective QRDRs was primarily responsible for high-level ciprofloxacin/levofloxacin resistance. Only one isolate had no mutation but a high fluoroquinolone MIC. CONCLUSIONS: Our study identified a strong correlation between antibiotic susceptibility profiles and mechanisms of fluoroquinolone resistance among carbapenem-resistant E. anophelis isolates, providing an important foundation for continued surveillance and epidemiological analyses of emerging E. anophelis opportunistic infections. Minocycline or ciprofloxacin has the potential for treatment of severe E. anophelis infections.


Assuntos
Antibacterianos/farmacologia , DNA Topoisomerases/genética , Farmacorresistência Bacteriana , Infecções por Flavobacteriaceae/microbiologia , Flavobacteriaceae/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Feminino , Fluoroquinolonas/farmacologia , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Sequenciamento Completo do Genoma
3.
Eur J Clin Microbiol Infect Dis ; 38(11): 2045-2052, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31352669

RESUMO

Elizabethkingia genus is emerging in hospitals and resistant to multiple antibiotics. The intrinsic imipenem resistance of Elizabethkingia genus is related to two chromosome-encoded metallo-beta-lactamases (MBLs), BlaB and GOB. This study was aimed to investigate the in vitro activity of imipenem, vancomycin, and rifampicin in clinical Elizabethkingia species. The distribution and heterogeneity of MBLs responsible for imipenem resistance were also evaluated. A total of 167 Elizabethkingia isolates from different patients were collected, including E. anophelis (142), E. meningoseptica (11), and E. miricola (14). All isolates were evaluated by the broth microdilution assay, ethylenediaminetetraacetic acid (EDTA) combination disk test, and EDTA-based microdilution test. The characteristics of BlaB and GOB were evaluated in phylogenetic analysis and heterologous expression experiments. Most of the isolates were susceptible to rifampin (94%), whereas none of the isolates were susceptible to imipenem. Vancomycin showed intermediate effectiveness. EDTA could reduce 4 folds or more minimum inhibitory concentrations (MICs) of imipenem in 105 isolates (62.9%). Of the isolates, the amino acid sequences of BlaB and GOB were divided into 22 and 25 different types, respectively. Phylogenetic analysis showed BlaB and GOB are species-specific proteins. Furthermore, GOB and BlaB from E. anophelis showed higher imipenem hydrolysis efficiency than those from the other two species. Rifampicin remained the most active agent in the current study. The mechanism of Elizabethkingia resistance to imipenem primarily stemmed from MBLs but other mechanisms could also exist, which requires further investigation.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Infecções por Flavobacteriaceae/microbiologia , Flavobacteriaceae/efeitos dos fármacos , Flavobacteriaceae/isolamento & purificação , beta-Lactamases/metabolismo , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Ácido Edético/farmacologia , Flavobacteriaceae/classificação , Flavobacteriaceae/enzimologia , Humanos , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , Filogenia , Rifampina/farmacologia , Especificidade da Espécie , Vancomicina/farmacologia , beta-Lactamases/genética
4.
Heliyon ; 9(11): e22138, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045158

RESUMO

The incidence of zoonotic diseases, such as coronavirus disease 2019 and Ebola virus disease, is increasing worldwide. However, drug and vaccine development for zoonotic diseases has been hampered because the experiments involving live viruses are limited to high-containment laboratories. The Ebola virus minigenome system enables researchers to study the Ebola virus under BSL-2 conditions. Here, we found that the addition of the nucleocapsid protein of human coronaviruses, such as severe acute respiratory syndrome coronavirus 2, can increase the ratio of green fluorescent protein-positive cells by 1.5-2 folds in the Ebola virus minigenome system. Further analysis showed that the nucleocapsid protein acts as an activator of the Ebola virus minigenome system. Here, we developed an EBOV MiniG Plus system based on the Ebola virus minigenome system by adding the SARS-CoV-2 nucleocapsid protein. By evaluating the antiviral effect of remdesivir and rupintrivir, we demonstrated that compared to that of the traditional Ebola virus minigenome system, significant concentration-dependent activity was observed in the EBOV MiniG Plus system. Taken together, these results demonstrate the utility of adding nucleocapsid protein to the Ebola virus minigenome system to create a powerful platform for screening antiviral drugs against the Ebola virus.

5.
J Adv Res ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37557954

RESUMO

BACKGROUND: Modifications of lipid metabolism were closely associated with the manifestations and prognosis of coronavirus disease of 2019 (COVID-19). Pre-existing metabolic conditions exacerbated the severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection while modulations of aberrant lipid metabolisms alleviated the manifestations. To elucidate the underlying mechanisms, an experimental platform that reproduces human respiratory physiology is required. METHODS: Here we generated induced pluripotent stem cell-derived airway organoids (iPSC-AOs) that resemble the human native airway. Single-cell sequencing (ScRNAseq) and microscopic examination verified the cellular heterogeneity and microstructures of iPSC-AOs, respectively. We subjected iPSC-AOs to SARS-CoV-2 infection and investigated the treatment effect of lipid modifiers statin drugs on viral pathogenesis, gene expression, and the intracellular trafficking of the SARS-CoV-2 entry receptor angiotensin-converting enzyme-2 (ACE-2). RESULTS: In SARS-CoV-2-infected iPSC-AOs, immunofluorescence staining detected the SARS-CoV-2 spike (S) and nucleocapsid (N) proteins and bioinformatics analysis further showed the aberrant enrichment of lipid-associated pathways. In addition, SARS-CoV-2 hijacked the host RNA replication machinery and generated the new isoforms of a high-density lipoprotein constituent apolipoprotein A1 (APOA1) and the virus-scavenging protein deleted in malignant brain tumors 1 (DMBT1). Manipulating lipid homeostasis using cholesterol-lowering drugs (e.g. Statins) relocated the viral entry receptor angiotensin-converting enzyme-2 (ACE-2) and decreased N protein expression, leading to the reduction of SARS-CoV-2 entry and replication. The same lipid modifications suppressed the entry of luciferase-expressing SARS-CoV-2 pseudoviruses containing the S proteins derived from different SARS-CoV-2 variants, i.e. wild-type, alpha, delta, and omicron. CONCLUSIONS: Together, our data demonstrated that modifications of lipid pathways restrict SARS-CoV-2 propagation in the iPSC-AOs, which the inhibition is speculated through the translocation of ACE2 from the cell membrane to the cytosol. Considering the highly frequent mutation and generation of SARS-CoV-2 variants, targeting host metabolisms of cholesterol or other lipids may represent an alternative approach against SARS-CoV-2 infection.

6.
Microbiol Spectr ; 10(1): e0236221, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196799

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that causes coronavirus disease 2019 (COVID-19). However, the long-term health consequences of COVID-19 are not fully understood. We aimed to determine the long-term lung pathology and blood chemistry changes in Syrian hamsters infected with SARS-CoV-2. Syrian hamsters (Mesocricetus auratus) were inoculated with 105 PFU of SARS-CoV-2, and changes post-infection (pi) were observed for 20 days. On days 5 and 20 pi, the lungs were harvested and processed for pathology and viral load count. Multiple blood samples were collected every 3 to 5 days to observe dynamic changes in blood chemistry. Infected hamsters showed consistent weight loss until day 7 pi At day 5 pi, histopathology of the lungs showed moderate to severe inflammation and the virus could be detected. These results indicate that SARS-CoV-2 has an acute onset and recovery course in the hamster infection model. During the acute onset, blood triglyceride levels increased significantly at day 3 pi During the recovery course, uric acid and low-density lipoprotein levels increased significantly, but the total protein and albumin levels decreased. Together, our study suggests that SARS-CoV-2 infection in hamsters not only causes lung damage but also causes long-term changes in blood biochemistry during the recovery process. IMPORTANCE COVID-19 is now considered a multiorgan disease with a wide range of manifestations. There are increasing reports of persistent and long-term effects after acute COVID-19, but the long-term health consequences of COVID-19 are not fully understood. This study reported for the first time the use of blood samples collected continuously in a SARS-CoV-2-infected hamster model, which provides more information about the dynamic changes in blood biochemistry during the acute and recovery phases of SARS-CoV-2 infection. Our study suggests that SARS-CoV-2 infection in hamsters not only causes lung damage but also causes long-term changes in blood biochemistry during the recovery process. The study may be used by several researchers and clinicians, especially those who are studying potential treatments for patients with post-acute COVID-19 syndrome.


Assuntos
COVID-19/complicações , SARS-CoV-2/fisiologia , Animais , COVID-19/sangue , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Cricetinae , Modelos Animais de Doenças , Humanos , Lipoproteínas LDL/sangue , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Masculino , Mesocricetus , Ácido Úrico/sangue , Síndrome de COVID-19 Pós-Aguda
7.
Antimicrob Agents Chemother ; 53(2): 748-55, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19015331

RESUMO

A real-time assay system that allows monitoring of intracellular human enterovirus (HEV) protease activity was established using the principle of fluorescence resonance energy transfer (FRET). It was accomplished by engineering cells to constitutively express a genetically encoded FRET probe. The FRET-based probe was designed to contain an enterovirus 71 3C protease (3C(pro)) cleavage motif flanked by the FRET pair composed of green fluorescent protein 2 and red fluorescent protein 2 (DsRed2). Efficient FRET from the stable line was detected in a real-time manner by fluorescence microscopy, and the disruption of FRET was readily monitored upon HEV infection. The level of the repressed FRET was proportional to the input virus titer and the infection duration as measured by the fluorometric method. The FRET biosensor cell line was also responsive to other related HEV serotypes, but not to the phylogenetically distant herpes simplex virus, which was confirmed by Western blot analysis. The FRET biosensor was then utilized to develop a format for the determination of antiviral susceptibility, as the reduced FRET appeared to reflect viral replication. Evaluations of the FRET biosensor system with representative HEV serotypes demonstrated that their susceptibilities to a 3C(pro) inhibitor, rupintrivir, were all accurately determined. In summary, this novel FRET-based system is a means for rapid detection, quantification, and drug susceptibility testing for HEVs, with potential for the development of a high-throughput screening assay.


Assuntos
Cisteína Endopeptidases/metabolismo , Enterovirus Humano A , Infecções por Enterovirus/virologia , Proteínas Virais/metabolismo , Proteases Virais 3C , Antivirais/farmacologia , Técnicas Biossensoriais , Western Blotting , Fusão Celular , Linhagem Celular , Cisteína Endopeptidases/genética , Transferência Ressonante de Energia de Fluorescência , Fluorometria , Proteínas de Fluorescência Verde/genética , Células HeLa , Herpesvirus Humano 1/efeitos dos fármacos , Humanos , Processamento de Imagem Assistida por Computador , Isoxazóis/farmacologia , Testes de Sensibilidade Microbiana , Fenilalanina/análogos & derivados , Plasmídeos/genética , Pirrolidinonas/farmacologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Transfecção , Valina/análogos & derivados , Ensaio de Placa Viral , Proteínas Virais/genética
8.
Sci Rep ; 9(1): 1806, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755714

RESUMO

Elizabethkingia species are ubiquitous bacteria that uncommonly cause human infection. Elizabethkingia anophelis was first identified in 2011 from the mosquito Anopheles gambiae. The currently available bacterial typing systems vary greatly with respect to labour, cost, reliability, and ability to discriminate among bacterial strains. Polymerase chain reaction (PCR)-based fingerprinting using random amplified polymorphic DNA (RAPD) is commonly used to identify genetic markers. To our knowledge, no system coupling RAPD-PCR and capillary gel electrophoresis (CGE) has been utilized for the epidemiological typing of E. anophelis. Thus, the aim of the present study was to establish a reliable and reproducible molecular typing technique for E. anophelis isolates based on a multi-centre assessment of bacteraemia patients. Here, we used a rapid CGE-light-emitting diode-induced fluorescence (LEDIF)-based method in conjunction with RAPD-PCR to genotype E. anophelis with a high level of discrimination. All clinical isolates of E. anophelis were found to be typeable, and isolates from two hospitals formed two distinct clusters. The results demonstrated the potential of coupling RAPD and CGE as a rapid and efficient molecular typing tool, providing a reliable method for surveillance and epidemiological investigations of bacterial infections. The proposed method shows promise as a novel, cost-effective, high-throughput, first-pass typing method.


Assuntos
Eletroforese Capilar/métodos , Flavobacteriaceae/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico/métodos , DNA Bacteriano/genética , Genótipo , Tipagem Molecular , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes
9.
PeerJ ; 6: e5608, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30225179

RESUMO

OBJECTIVES: Several Elizabethkingia species often exhibit extensive antibiotic resistance, causing infections associated with severe morbidity and high mortality rates worldwide. In this study, we determined fluoroquinolone susceptibility profiles of clinical Elizabethkingia spp. isolates and investigated the resistance mechanisms. METHODS: In 2017-2018, 131 Elizabethkingia spp. isolates were recovered from specimens collected at tertiary care centers in northern Taiwan. Initial species identification using the Vitek MS system and subsequent verification by 16S rRNA sequencing confirmed the presence of Elizabethkingia anophelis (n = 111), E. miricola (n = 11), and E. meningoseptica (n = 9). Fluoroquinolone susceptibility was determined using the microbroth dilution method, and fluoroquinolone resistance genes were analyzed by sequencing. RESULTS: Among Elizabethkingia spp. isolates, 91% and 77% were resistant to ciprofloxacin and levofloxacin, respectively. The most prevalent alterations were two single mutations in GyrA, Ser83Ile, and Ser83Arg, detected in 76% of the isolates exhibiting fluoroquinolone MIC between 8 and 128 µg/ml. Another GyrA single mutation, Asp87Asn, was identified in two quinolone-resistant E. miricola strains. None of the isolates had alterations in GyrB, ParC, or ParE. We developed a high-resolution melting assay for rapid identification of the prevalent gyrA gene mutations. The genetic relationship between the isolates was evaluated by random amplified polymorphic DNA PCR that yielded diverse pulsotypes, indicating the absence of any temporal or spatial overlap among the patients during hospitalization. CONCLUSION: Our analysis of fluoroquinolone-resistant Elizabethkingia spp. isolates provides information for further research on the variations of the resistance mechanism and potential clinical guidance for infection management.

10.
PLoS One ; 9(2): e89370, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586725

RESUMO

The use of a liquid culture system such as MGIT broth has greatly improved the sensitivity of isolating mycobacteria in clinical laboratories. Microscopic visualization of acid fast bacilli (AFB) in the culture positive MGIT broth remains the first routine step for rapidly indicating the presence of mycobacteria. We modified an ultraviolet (UV) light fixation process to increase AFB cells adherence to the slide. The retained haze proportion of a 1-cm circle marked area on the smear slide was quantified after the staining procedure indicating the adherence degree of AFB cells. More AFB cells were preserved on the slide after exposure to UV light of either germicidal lamp or UV crosslinker in a time-dependent manner. We demonstrated both the bovine serum albumin (BSA) in MGIT media and UV light exposure were required for enhancing fixation of AFB cells. While applying to AFB stains for 302 AFB positive MGIT broths in clinics, more AFB cells were retained and observed on smear slides prepared by the modified fixation procedure rather than by the conventional method. The modified fixation procedure was thus recommended for improving the sensitivity of microscopic diagnosis of AFB cells in culture positive MGIT broth.


Assuntos
Técnicas Bacteriológicas/métodos , Soroalbumina Bovina , Coloração e Rotulagem/métodos , Raios Ultravioleta , Corantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA