RESUMO
Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are important hepatic transporters. We previously identified OATP1B3 being critically implicated in the disposition of abiraterone. We aimed to further investigate the effects of abiraterone on the activities of OATP1B1 and OATP1B3 utilizing a validated endogenous biomarker coproporphyrin I (CP-I). We used OATP1B-transfected cells to characterize the inhibitory potential of abiraterone against OATP1B-mediated uptake of CP-I. Inhibition constant (K i) was incorporated into our physiologically based pharmacokinetic (PBPK) modeling to simulate the systemic exposures of CP-I among cancer populations receiving either our model-informed 500 mg or clinically approved 1000 mg abiraterone acetate (AA) dosage. Simulated data were compared with clinical CP-I concentrations determined among our nine metastatic prostate cancer patients receiving 500 mg AA treatment. Abiraterone inhibited OATP1B3-mediated, but not OATP1B1-mediated, uptake of CP-I in vitro, with an estimated K i of 3.93 µM. Baseline CP-I concentrations were simulated to be 0.81 ± 0.26 ng/ml and determined to be 0.72 ± 0.16 ng/ml among metastatic prostate cancer patients, both of which were higher than those observed for healthy subjects. PBPK simulations revealed an absence of OATP1B3-mediated interaction between abiraterone and CP-I. Our clinical observations confirmed that CP-I concentrations remained comparable to baseline levels up to 12 weeks post 500 mg AA treatment. Using CP-I as an endogenous biomarker, we identified the inhibition of abiraterone on OATP1B3 but not OATP1B1 in vitro, which was predicted and observed to be clinically insignificant. We concluded that the interaction risk between AA and substrates of OATP1Bs is low. SIGNIFICANCE STATEMENT: The authors used the endogenous biomarker coproporphyrin I (CP-I) and identified abiraterone as a moderate inhibitor of organic anion transporting polypeptide (OATP) 1B3 in vitro. Subsequent physiologically based pharmacokinetic (PBPK) simulations and clinical observations suggested an absence of OATP1B-mediated interaction between abiraterone and CP-I among prostate cancer patients. This multipronged study concluded that the interaction risk between abiraterone acetate and substrates of OATP1Bs is low, demonstrating the application of PBPK-CP-I modeling in predicting OATP1B-mediated interaction implicating abiraterone.
Assuntos
Acetato de Abiraterona , Coproporfirinas , Transportador 1 de Ânion Orgânico Específico do Fígado , Neoplasias da Próstata , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Humanos , Masculino , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Coproporfirinas/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Acetato de Abiraterona/farmacocinética , Interações Medicamentosas , Biomarcadores/metabolismo , Células HEK293 , Modelos Biológicos , Transportadores de Ânions Orgânicos/metabolismo , Idoso , Pessoa de Meia-IdadeRESUMO
Perfluorooctanoic acid (PFOA) is an environmental toxicant exhibiting a years-long biological half-life (t1/2) in humans and is linked with adverse health effects. However, limited understanding of its toxicokinetics (TK) has obstructed the necessary risk assessment. Here, we constructed the first middle-out physiologically based toxicokinetic (PBTK) model to mechanistically explain the persistence of PFOA in humans. In vitro transporter kinetics were thoroughly characterized and scaled up to in vivo clearances using quantitative proteomics-based in vitro-to-in vivo extrapolation. These data and physicochemical parameters of PFOA were used to parameterize our model. We uncovered a novel uptake transporter for PFOA, highly likely to be monocarboxylate transporter 1 which is ubiquitously expressed in body tissues and may mediate broad tissue penetration. Our model was able to recapitulate clinical data from a phase I dose-escalation trial and divergent half-lives from clinical trial and biomonitoring studies. Simulations and sensitivity analyses confirmed the importance of renal transporters in driving extensive PFOA reabsorption, reducing its clearance and augmenting its t1/2. Crucially, the inclusion of a hypothetical, saturable renal basolateral efflux transporter provided the first unified explanation for the divergent t1/2 of PFOA reported in clinical (116 days) versus biomonitoring studies (1.3-3.9 years). Efforts are underway to build PBTK models for other perfluoroalkyl substances using similar workflows to assess their TK profiles and facilitate risk assessments.
Assuntos
Caprilatos , Fluorocarbonos , Humanos , Toxicocinética , Fluorocarbonos/farmacocinética , Medição de Risco , Proteínas de Membrana Transportadoras , Modelos BiológicosRESUMO
PURPOSE: Increased bleeding risk was found associated with concurrent prescription of rivaroxaban and amiodarone. We previously recommended dose adjustment for rivaroxaban utilizing a physiologically based pharmacokinetic (PBPK) modeling approach. Our subsequent in vitro studies discovered the pivotal involvement of human renal organic anion transporter 3 (hOAT3) in the renal secretion of rivaroxaban and the inhibitory potency of amiodarone. This study aimed to redefine the disease-drug-drug interactions (DDDI) between rivaroxaban and amiodarone and update the potential risks. METHODS: Prospective simulations were conducted with updated PBPK models of rivaroxaban and amiodarone incorporating hOAT3-related parameters. RESULTS: Simulations to recapitulate previously explored DDDI in renal impairment showed a higher bleeding tendency in all simulation scenarios after integrating hOAT3-mediated clearance into PBPK models. Further sensitivity analysis revealed that both hOAT3 dysfunction and age could affect the extent of DDDI, and age was shown to have a more pivotal role on rivaroxaban in vivo exposure. When amiodarone was prescribed along with our recommended dose reduction of rivaroxaban to 10 mg in moderate renal impaired elderly people, it could result in persistently higher rivaroxaban peak concentrations at a steady state. To better manage the increased bleeding risk among such a vulnerable population, a dose reduction of rivaroxaban to 2.5 mg twice daily resulted in its acceptable in vivo exposure. CONCLUSION: Close monitoring of bleeding tendency is essential for elderly patients with moderate renal impairment receiving co-prescribed rivaroxaban and amiodarone. Further dose reduction is recommended for rivaroxaban to mitigate this specific DDDI risk.
Assuntos
Amiodarona , Insuficiência Renal , Humanos , Idoso , Rivaroxabana , Amiodarona/efeitos adversos , Rim , Hemorragia/induzido quimicamenteRESUMO
AIMS: Rivaroxaban is a viable anticoagulant for the management of cancer-associated venous thromboembolism (CA-VTE). A previously verified physiologically-based pharmacokinetic (PBPK) model of rivaroxaban established how its multiple pathways of elimination via both CYP3A4/2J2-mediated hepatic metabolism and organic anion transporter 3 (OAT3)/P-glycoprotein-mediated renal secretion predisposes rivaroxaban to drug-drug-disease interactions (DDDIs) with clinically relevant protein kinase inhibitors (PKIs). We proposed the application of PBPK modelling to prospectively interrogate clinically significant DDIs between rivaroxaban and PKIs (erlotinib and nilotinib) for dose adjustments in CA-VTE. METHODS: The inhibitory potencies of the PKIs on CYP3A4/2J2-mediated metabolism of rivaroxaban were characterized. Using prototypical OAT3 inhibitor ketoconazole, in vitro OAT3 inhibition assays were optimized to ascertain the in vivo relevance of derived transport inhibitory constants (Ki ). Untested DDDIs between rivaroxaban and erlotinib or nilotinib were simulated. RESULTS: Mechanism-based inactivation (MBI) of CYP3A4-mediated rivaroxaban metabolism by both PKIs and MBI of CYP2J2 by erlotinib were established. The importance of substrate specificity and nonspecific binding to derive OAT3-inhibitory Ki values of ketoconazole and nilotinib for the accurate prediction of interactions was illustrated. When simulated rivaroxaban exposure variations with concomitant erlotinib and nilotinib therapy were evaluated using published dose-exposure equivalence metrics and bleeding risk analyses, dose reductions from 20 to 15 and 10 mg in normal and mild renal dysfunction, respectively, were warranted. CONCLUSION: We established a PBPK-DDDI model to prospectively evaluate clinically relevant interactions between rivaroxaban and PKIs for the safe and efficacious management of CA-VTE.
Assuntos
Neoplasias , Tromboembolia Venosa , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Cloridrato de Erlotinib/efeitos adversos , Humanos , Cetoconazol/farmacocinética , Modelos Biológicos , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Estudos Prospectivos , Inibidores de Proteínas Quinases/efeitos adversos , Rivaroxabana , Tromboembolia Venosa/tratamento farmacológico , Tromboembolia Venosa/etiologiaRESUMO
5F-MDMB-PINACA and 4F-MDMB-BINACA are synthetic cannabinoids (SCs) that elicit cannabinoid psychoactive effects. Defining pharmacokinetic-pharmacodynamic (PK-PD) relationships governing SCs and their metabolites are paramount to investigating their in vivo toxicological outcomes. However, the disposition kinetics and cannabinoid receptor (CB) activities of the primary metabolites of SCs are largely unknown. Additionally, reasons underlying the selection of ester hydrolysis metabolites (EHMs) as urinary biomarkers are often unclear. Here, metabolic reaction phenotyping was performed to identify key metabolizing enzymes of the parent SCs. Hepatic clearances of parent SCs and their EHMs were estimated from microsomal metabolic stability studies. Renal clearances were simulated using a mechanistic kidney model incorporating in vitro permeability and organic anionic transporter 3 (OAT3)-mediated uptake data. Overall clearances were considered in tandem with estimated volumes of distribution for in vivo biological half-lives (t1/2) predictions. Interactions of the compounds with CB1 and CB2 were investigated using a G-protein coupled receptor activation assay. We demonstrated that similar enzymatic isoforms were implicated in the metabolism of 5F-MDMB-PINACA and 4F-MDMB-BINACA. Our in vivo t1/2 determinations verified the rapid elimination of parent SCs and suggest prolonged circulation of their EHMs. The pronounced attenuation of the potencies and efficacies of the metabolites against CB1 and CB2 further suggests how toxic manifestations of SC abuse are likely precipitated by augmented exposure to parent SCs. Notably, basolateral OAT3-mediated uptake of the EHMs substantiates their higher urinary abundance. These novel insights underscore the importance of mechanistic, quantitative and systematic characterization of PK-PD relationships in rationalizing the toxicities of SCs.
Assuntos
Canabinoides/farmacocinética , Canabinoides/toxicidade , Ésteres/metabolismo , Animais , Biomarcadores/metabolismo , Cães , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Células HEK293 , Humanos , Hidrólise , Células Madin Darby de Rim Canino , Masculino , Microssomos Hepáticos/metabolismo , Urina/químicaRESUMO
Substantial evidence underscores the clinical efficacy of inhibiting CYP17A1-mediated androgen biosynthesis by abiraterone for treatment of prostate oncology. Previous structural analysis and in vitro assays revealed inconsistencies surrounding the nature and potency of CYP17A1 inhibition by abiraterone. Here, we establish that abiraterone is a slow-, tight-binding inhibitor of CYP17A1, with initial weak binding preceding the subsequent slow isomerization to a high-affinity CYP17A1-abiraterone complex. The in vitro inhibition constant of the final high-affinity CYP17A1-abiraterone complex ( ( K i * = 0.39 nM )yielded a binding free energy of -12.8 kcal/mol that was quantitatively consistent with the in silico prediction of -14.5 kcal/mol. Prolonged suppression of dehydroepiandrosterone (DHEA) concentrations observed in VCaP cells after abiraterone washout corroborated its protracted CYP17A1 engagement. Molecular dynamics simulations illuminated potential structural determinants underlying the rapid reversible binding characterizing the two-step induced-fit model. Given the extended residence time (42 hours) of abiraterone within the CYP17A1 active site, in silico simulations demonstrated sustained target engagement even when most abiraterone has been eliminated systemically. Subsequent pharmacokinetic-pharmacodynamic (PK-PD) modeling linking time-dependent CYP17A1 occupancy to in vitro steroidogenic dynamics predicted comparable suppression of downstream DHEA-sulfate at both 1000- and 500-mg doses of abiraterone acetate. This enabled mechanistic rationalization of a clinically reported PK-PD disconnect, in which equipotent reduction of downstream plasma DHEA-sulfate levels was achieved despite a lower systemic exposure of abiraterone. Our novel findings provide the impetus for re-evaluating the current dosing paradigm of abiraterone with the aim of preserving PD efficacy while mitigating its dose-dependent adverse effects and financial burden. SIGNIFICANCE STATEMENT: With the advent of novel molecularly targeted anticancer modalities, it is becoming increasingly evident that optimal dose selection must necessarily be predicated on mechanistic characterization of the relationships between target exposure, drug-target interactions, and pharmacodynamic endpoints. Nevertheless, efficacy has always been perceived as being exclusively synonymous with affinity-based measurements of drug-target binding. This work demonstrates how elucidating the slow-, tight-binding inhibition of CYP17A1 by abiraterone via in vitro and in silico analyses was pivotal in establishing the role of kinetic selectivity in mediating time-dependent CYP17A1 engagement and eventually downstream efficacy outcomes.
Assuntos
Androstenos/farmacologia , Inibidores Enzimáticos/farmacologia , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Linhagem Celular Tumoral , Desidroepiandrosterona/farmacologia , Humanos , Cinética , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Esteroides/farmacologiaRESUMO
The gut microbiota possesses diverse metabolic activities, but its contribution toward heterogeneous toxicological responses is poorly understood. In this study, we investigated the role of the liver-gut microbiota axis in underpinning the hepatotoxicity of tacrine. We employed an integrated strategy combining pharmacokinetics, toxicology, metabonomics, genomics, and metagenomics to elucidate and validate the mechanism of tacrine-induced hepatotoxicity in Lister hooded rats. Pharmacokinetic studies in rats demonstrated 3.3-fold higher systemic exposure to tacrine in strong responders that experienced transaminitis, revealing enhanced enterohepatic recycling of deglucuronidated tacrine in this subgroup, not attributable to variation in hepatic disposition gene expression. Metabonomic studies implicated variations in gut microbial activities that mapped onto tacrine-induced transaminitis. Metagenomics delineated greater deglucuronidation capabilities in strong responders, based on differential gut microbial composition (e.g., Lactobacillus, Bacteroides, and Enterobacteriaceae) and approximately 9% higher ß-glucuronidase gene abundance compared with nonresponders. In the validation study, coadministration with oral ß-glucuronidase derived from Escherichia coli and pretreatment with vancomycin and imipenem significantly modulated the susceptibility to tacrine-induced transaminitis in vivo. CONCLUSION: This study establishes pertinent gut microbial influences in modifying the hepatotoxicity of tacrine, providing insights for personalized medicine initiatives. (Hepatology 2018;67:282-295).
Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Tacrina/toxicidade , Animais , Biópsia por Agulha , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Imuno-Histoquímica , Testes de Função Hepática , Masculino , Distribuição Aleatória , Ratos , Ratos Endogâmicos , Valores de Referência , Índice de Gravidade de Doença , Tacrina/farmacocinética , Tacrina/farmacologiaRESUMO
Rivaroxaban is indicated for stroke prevention in nonvalvular atrial fibrillation (AF). Its elimination is mediated by both hepatic metabolism and renal excretion. Consequently, its clearance is susceptible to both intrinsic (pathophysiological) and extrinsic (concomitant drugs) variabilities that in turn implicate bleeding risks. Upon systematic model verification, physiologically based pharmacokinetic (PBPK) models are qualified for the quantitative rationalization of complex drug-drug-disease interactions (DDDIs). Hence, this study aimed to develop and verify a PBPK model of rivaroxaban systematically. Key parameters required to define rivaroxaban's disposition were either obtained from in vivo data or generated via in vitro metabolism and transport kinetic assays. Our developed PBPK model successfully predicted rivaroxaban's clinical pharmacokinetic parameters within predefined success metrics. Consideration of basolateral organic anion transporter 3 (OAT3)-mediated proximal tubular uptake in tandem with apical P-glycoprotein (P-gp)-mediated efflux facilitated mechanistic characterization of the renal elimination of rivaroxaban in both healthy and renal impaired patients. Retrospective drug-drug interaction (DDI) simulations, incorporating in vitro metabolic inhibitory parameters, accurately recapitulated clinically observed attenuation of rivaroxaban's hepatic clearance due to enzyme-mediated DDIs with CYP3A4/2J2 inhibitors (verapamil and ketoconazole). Notably, transporter-mediated DDI simulations between rivaroxaban and the P-gp inhibitor ketoconazole yielded minimal increases in rivaroxaban's systemic exposure when P-gp-mediated efflux was solely inhibited, but were successfully characterized when concomitant basolateral uptake inhibition was incorporated in the simulation. In conclusion, our developed PBPK model of rivaroxaban is systematically verified for prospective interrogation and management of untested yet clinically relevant DDDIs pertinent to AF management using rivaroxaban. SIGNIFICANCE STATEMENT: Rivaroxaban is susceptible to DDDIs comprising renal impairment and P-gp and CYP3A4/2J2 inhibition. Here, systematic construction and verification of a PBPK model of rivaroxaban, with the inclusion of a mechanistic kidney component, provided insight into the previously arcane role of OAT3-mediated basolateral uptake in influencing both clinically observed renal elimination of rivaroxaban and differential extents of transporter-mediated DDIs. The verified model holds potential for investigating clinically relevant DDDIs involving rivaroxaban and designing dosing adjustments to optimize its pharmacotherapy in atrial fibrillation.
Assuntos
Rivaroxabana/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Fibrilação Atrial/tratamento farmacológico , Simulação por Computador , Interações Medicamentosas , Humanos , Cetoconazol/farmacocinética , Rim/metabolismo , Modelos Biológicos , Transportadores de Ânions Orgânicos Sódio-Independentes/fisiologia , Rivaroxabana/uso terapêutico , Verapamil/análogos & derivados , Verapamil/farmacocinéticaRESUMO
Rivaroxaban, a direct Factor Xa inhibitor, is indicated for stroke prevention in nonvalvular atrial fibrillation (AF). Studies have revealed that the clearance of rivaroxaban is largely attributed to CYP3A4, CYP2J2 metabolism, and P-glycoprotein (P-gp) efflux pathways. Amiodarone and dronedarone are antiarrhythmic agents employed in AF management. Amiodarone, dronedarone, and their major metabolites, N-desethylamiodarone (NDEA) and N-desbutyldronedarone (NDBD), demonstrate inhibitory effects on CYP3A4 and CYP2J2 with U.S. Food and Drug Administration-recommended probe substrates. In addition, both amiodarone and dronedarone are known P-gp inhibitors. Hence, the concomitant administration of these antiarrhythmic agents has the potential to augment the systemic exposure of rivaroxaban through simultaneous impairment of its clearance pathways. Currently, however, clinical data on the extent of these postulated drug-drug interactions are lacking. In this study, in vitro inhibition assays using rivaroxaban as the probe substrate demonstrated that both dronedarone and NDBD produced reversible inhibition as well as irreversible mechanism-based inactivation of CYP3A4- and CYP2J2-mediated metabolism of rivaroxaban. However, amiodarone and NDEA were observed to cause reversible inhibition as well as mechanism-based inactivation of CYP3A4 but not CYP2J2. In addition, amiodarone, NDEA, and dronedarone, but not NDBD, were determined to inhibit P-gp-mediated rivaroxaban transport. The in vitro inhibition parameters were fitted into a mechanistic static model, which predicted a 37% and 31% increase in rivaroxaban exposure due to the inhibition of hepatic and gut metabolism by amiodarone and dronedarone, respectively. A separate model quantifying the inhibition of P-gp-mediated efflux by amiodarone or dronedarone projected a 9% increase in rivaroxaban exposure.
Assuntos
Antiarrítmicos/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Inibidores do Fator Xa/farmacocinética , Modelos Biológicos , Rivaroxabana/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Animais , Antiarrítmicos/metabolismo , Transporte Biológico , Citocromo P-450 CYP2J2 , Citocromo P-450 CYP3A/metabolismo , Inibidores das Enzimas do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Cães , Relação Dose-Resposta a Droga , Interações Medicamentosas , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Células Madin Darby de Rim Canino , Proteínas Recombinantes , Especificidade por Substrato , Fatores de TempoRESUMO
Daidzein, an isoflavone found abundantly in legumes, may benefit from bypassing upper gut absorption to reach the colon where it can be metabolized into the potent estrogen equol by the gut microbiome. To achieve this, we developed mucin coated protein-tannin multilayer microcarriers. Highly porous functionalized calcium carbonate (FCC) microparticles efficiently absorbed daidzein from a dimethyl sulfoxide solution, with a loading capacity of 21.6 ± 1.8 wt% as measured by ultra-high pressure liquid chromatography - mass spectrometry (UPLC-MS). Daidzein-containing FCC microparticles were then coated with a bovine serum albumin (BSA)-tannin n-layer film terminated with mucin ((BSA-TA)n-mucin) by layer-by-layer deposition from corresponding aqueous solutions followed by FCC decomposition with HCl. Raman spectroscopy confirmed mucin-tannin complexation involving both hydrophobic interactions and hydrogen bonding. The resulting multilayer microcarriers contained 54 wt% of nanocrystalline daidzein as confirmed by X-ray diffraction and UPLC-MS. Preliminary screening of several types of mucin coatings using an in vitro INFOGEST digestion model demonstrated that mucin type III from porcine stomach provided the highest protection against upper intestinal digestion. (BSA-TA)8-mucin and (BSA-TA)4-mucin microcarriers retained 71 ± 16.4% and 68 ± 4.6% of daidzein, respectively, at the end of the small intestinal phase. Mucin-free (BSA-TA)8 retained a lower daidzein amount of 46%. Daidzein release and further conversion into equol were observed during in vitro colonic studies with fecal microbiota from a healthy non-equol-producing donor and Slackia equolifaciens. The developed approach has potential for encapsulating other hydrophobic nutraceuticals or therapeutics, enhancing their bioaccessibility in the colon.
Assuntos
Equol , Isoflavonas , Cromatografia Líquida , Mucinas , Taninos , Espectrometria de Massas em Tandem , Isoflavonas/metabolismo , PolifenóisRESUMO
BACKGROUND AND OBJECTIVE: Abiraterone is a first-in-class inhibitor of cytochrome P450 17A1 (CYP17A1), and its pharmacokinetic (PK) profile is susceptible to intrinsic and extrinsic variabilities. Potential associations between abiraterone concentrations and pharmacodynamic consequences in prostate cancer may demand further dosage optimization to balance therapeutic outcomes. Consequently, we aim to develop a physiologically based pharmacokinetic (PBPK) model for abiraterone via a middle-out approach to prospectively interrogate the untested, albeit clinically relevant, scenarios. METHODS: To characterize in vivo hydrolysis of prodrug abiraterone acetate (AA) and supersaturation of abiraterone, in vitro aqueous solubility data, biorelevant measurements, and supersaturation and precipitation parameters were utilized for mechanistic absorption simulation. CYP3A4-mediated N-oxidation and sulfotransferase 2A1-catalyzed sulfation of abiraterone were subsequently quantified in human liver subcellular systems. Iterative PBPK model refinement involved evaluation of potential organic anion transporting polypeptide (OATP)-mediated abiraterone uptake in transfected cells in the absence and presence of albumin. RESULTS: The developed PBPK model recapitulated the duodenal concentration-time profile of both AA and abiraterone after simulated AA administration. Our findings established abiraterone as a substrate of hepatic OATP1B3 to recapitulate its unbound metabolic intrinsic clearance. Further consideration of a transporter-induced protein-binding shift established accurate translational scaling factors and extrapolated the sinusoidal uptake process. Subsequent simulations effectively predicted the PK of abiraterone upon single and multiple dosing. CONCLUSION: Our systematic development of the abiraterone PBPK model has demonstrated its application for the prospective interrogation of the individual or combined influences of potential interindividual variabilities influencing the systemic exposure of abiraterone.