Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 119(10): 2743-2756, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35841264

RESUMO

Regular monitoring and timely repair of concrete cracks are required to minimize further deterioration. Self-healing of cracks has been proposed as an alternative to the crack maintenance procedures. One of the proposed techniques is to use axenic cultures to exploit microbial-induced calcite precipitation (MICP). However, such healing agents are not cost-effective for in situ use. As the market for bio-based self-healing concrete necessitates a low-cost bio-agent, nonaxenic sulfate reducing bacterial (SRB) granules were investigated in this study through cultivation in an upflow anaerobic sludge blanket reactor. The compact granules can protect the bacteria from adverse conditions without encapsulation. This study investigated the microbial activities of SRB granules at different temperatures, pH, and chemical oxygen demand concentrations which the microbes would experience during the concrete casting and curing process. The attenuation and recovery of microbial activities were measured before and after the exposure. Moreover, the MICP yield was also tested for a possible use in self-healing bioconcrete. The results consistently showed that SRB granules were able to survive starvation, high temperature (50-60°C), and high pH (12), together with scanning electron microscope/energy dispersive spectrometry/X-ray diffraction analysis evidence. Microbial staining analysis demonstrated the formation of spores in the granules during their exposure to harsh conditions. SRB granule was thus demonstrated to be a viable self-healing nonaxenic agent for low-cost bioconcrete.


Assuntos
Materiais de Construção , Sulfatos , Bactérias , Carbonato de Cálcio , Materiais de Construção/análise , Materiais de Construção/microbiologia , Esgotos/microbiologia
2.
Sci Total Environ ; 791: 148270, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34119799

RESUMO

Bio-concrete is known for its self-healing capacity although the corrosion resistance was not investigated previously. This study presents an innovative bio-concrete by mixing anaerobic granular sludge into concrete to mitigate sewer corrosion. The control concrete and bio-concrete (with granular sludge at 1% and 2% of the cement weight) were partially submerged in a corrosion chamber for 6 months, simulating the tidal-region corrosion in sewers. The corrosion rates of 1% and 2% bio-concrete were about 17.2% and 42.8% less than that of the control concrete, together with 14.6% and 35.0% less sulfide uptake rates, 15.3% and 55.6% less sulfate concentrations, and higher surface pH (up to 1.8 units). Gypsum and ettringite were major corrosion products but in smaller sizes on bio-concrete than that of control concrete. The total relative abundance of corrosion-causing microorganisms, i.e. sulfide-oxidizing bacteria, was significantly reduced on bio-concrete, while more sulfate-reducing bacteria (SRB) was detected. The corrosion-resistance of bio-concrete was mainly attributed to activities of SRB derived from the granular sludge, which supported the sulfur cycle between the aerobic and anaerobic corrosion sub-layers. This significantly reduced the net production of biogenic sulfuric acid and thus corrosion. The results suggested that the novel granular sludge-based bio-concrete provides a highly potential solution to reduce sewer corrosion.


Assuntos
Esgotos , Enxofre , Materiais de Construção , Corrosão , Sulfetos
3.
Bioresour Technol ; 330: 124994, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33773264

RESUMO

Anaerobic co-digestion of primary sludge with two types of drinking water treatment sludge (DWTS), namely iron- or aluminum-rich DWTS (Fe- or Al-DWTS) were systematically evaluated by biochemical methane potential tests, kinetic modelling, downstream process parameters and microbial community analysis. Specific methane yields decreased approximately 19% to 123 mL·g-1 VS, while the hydrolysis constant kh decreased from 0.21 d-1 to 0.18 d-1 for Fe-DWTS at 10% to 40% dosages. On the contrary, specific methane yields decreased 45-55% for Al-DWTS, and kh decreased to 0.14 d-1 at 40% dosage. Significant removals (>95%) of phosphate and hydrogen sulfide were observed for Fe- and Al-DWTS additions at 40% dosage. Microbial community analysis revealed that Al-DWTS increased the abundance of most hydrogenotrophic methanogens, while Fe-DWTS increased the abundance of acetoclastic methanogens. Kinetic modelling further revealed that Fe- and Al-DWTS additions affected the hydrolysis and methanogenesis process kinetics and the methane yield differently.


Assuntos
Água Potável , Purificação da Água , Anaerobiose , Reatores Biológicos , Digestão , Metano , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA