Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 137: 108739, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37061071

RESUMO

Fish skin is critical to physical defence against pathogens and there is a need to understand the physiological processes impacting ulcers and their healing. Ulcers have been reported in farmed Chinook salmon in New Zealand. This study investigated stress, immune and structural gene expression in farmed Chinook salmon skin with and without ulcers from two sites in New Zealand sampled from February (higher temperature, late summer) to May (lower temperature, late autumn). Skin samples taken adjacent to non-specific ulcers in May and control fish in February demonstrated upregulation of heat shock protein 70 relative to control fish in May. Anterior gradient 2 expression was upregulated in fish with ulcers relative to control fish (both February and May), suggesting increased mucous cell activity. Based on the results of this study, fish with non-specific ulcers showed evidence of stress, inflammation, re-epithelisation, and delayed healing near the ulcer site, elucidating the importance of these processes in the pathogenesis of non-specific ulcers in farmed chinook salmon.


Assuntos
Doenças dos Peixes , Salmão , Animais , Salmão/genética , Úlcera , Inflamação/genética , Inflamação/veterinária , Nova Zelândia , Doenças dos Peixes/patologia
2.
Fish Shellfish Immunol ; 124: 28-38, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35367374

RESUMO

Little is known about host responses of farmed Chinook salmon with skin lesions, despite the lesions being associated with increased water temperatures and elevated mortality rates. To address this shortfall, a transcriptomic approach was used to characterise the molecular landscape of spot lesions, the most commonly reported lesion type in New Zealand Chinook salmon, versus healthy appearing skin in fish with and without spot lesions. Many biological (gene ontology) pathways were enriched in lesion adjacent tissue, relative to control skin tissue, including proteolysis, fin regeneration, calcium ion binding, mitochondrial transport, actin cytoskeleton organisation, epithelium development, and tissue development. In terms of specific transcripts of interest, pro-inflammatory cytokines (interleukin 1ß and tumour necrosis factor), annexin A1, mucin 2, and calreticulin were upregulated, while cathepsin H, mucin 5AC, and perforin 1 were downregulated in lesion tissue. In some instances, changes in gene expression were consistent between lesion and healthy appearing skin from the same fish relative to lesion free fish, suggesting that host responses weren't limited to the site of the lesion. Goblet cell density in skin histological sections was not different between skin sample types. Collectively, these results provide insights into the physiological changes associated with common spot lesions in farmed Chinook salmon.


Assuntos
Doenças dos Peixes , Dermatopatias , Animais , Doenças dos Peixes/patologia , Nova Zelândia , Salmão/fisiologia , Transcriptoma
3.
J Biol Chem ; 295(42): 14510-14521, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32817170

RESUMO

Cyclic peptides are reported to have antibacterial, antifungal, and other bioactivities. Orbitides are a class of cyclic peptides that are small, head-to-tail cyclized, composed of proteinogenic amino acids and lack disulfide bonds; they are also known in several genera of the plant family Rutaceae. Melicope xanthoxyloides is the Australian rain forest tree of the Rutaceae family in which evolidine, the first plant cyclic peptide, was discovered. Evolidine (cyclo-SFLPVNL) has subsequently been all but forgotten in the academic literature, so to redress this we used tandem MS and de novo transcriptomics to rediscover evolidine and decipher its biosynthetic origin from a short precursor just 48 residues in length. We also identified another six M. xanthoxyloides orbitides using the same techniques. These peptides have atypically diverse C termini consisting of residues not recognized by either of the known proteases plants use to macrocyclize peptides, suggesting new cyclizing enzymes await discovery. We examined the structure of two of the novel orbitides by NMR, finding one had a definable structure, whereas the other did not. Mining RNA-seq and whole genome sequencing data from other species of the Rutaceae family revealed that a large and diverse family of peptides is encoded by similar sequences across the family and demonstrates how powerful de novo transcriptomics can be at accelerating the discovery of new peptide families.


Assuntos
Peptídeos Cíclicos/genética , Rutaceae/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Ressonância Magnética Nuclear Biomolecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Folhas de Planta/metabolismo , Rutaceae/genética , Alinhamento de Sequência , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA