Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 28(24): 6068-78, 2008 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-18550749

RESUMO

Despite the importance of Mcl-1, an anti-apoptotic Bcl-2 family member, in the regulation of apoptosis, little is known regarding its role in nervous system development and injury-induced neuronal cell death. Because germline deletion of Mcl-1 results in peri-implantation lethality, we address the function of Mcl-1 in the nervous system using two different conditional Mcl-1 mouse mutants in the developing nervous system. Here, we show for the first time that Mcl-1 is required for neuronal development. Neural precursors within the ventricular zone and newly committed neurons in the cortical plate express high levels of Mcl-1 throughout cortical neurogenesis. Loss of Mcl-1 in neuronal progenitors results in widespread apoptosis. Double labeling with active caspase 3 and Tuj1 reveals that newly committed Mcl1 deficient neurons undergo apoptosis as they commence migration away from the ventricular zone. Examination of neural progenitor differentiation in vitro demonstrated that cell death in the absence of Mcl1 is cell autonomous. Although conditional deletion of Mcl-1 in cultured neurons does not trigger apoptosis, loss of Mcl-1 sensitizes neurons to an acute DNA damaging insult. Indeed, the rapid reduction of Mcl-1 mRNA and protein levels are early events after DNA damage in neurons, and maintaining high Mcl-1 levels can protect neurons against death. Together, our results are the first to demonstrate the requirement of Mcl-1, an anti-apoptotic Bcl-2 family protein, for cortical neurogenesis and the survival of neurons after DNA damage.


Assuntos
Apoptose/fisiologia , Sistema Nervoso Central/embriologia , Dano ao DNA/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Fatores Etários , Animais , Apoptose/genética , Caspase 3/metabolismo , Diferenciação Celular , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células , Células Cultivadas , Sistema Nervoso Central/citologia , Dano ao DNA/genética , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Transgênicos , Mutação/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Células-Tronco/fisiologia , Transfecção/métodos , Tubulina (Proteína)/metabolismo
2.
J Neurosci ; 25(6): 1324-34, 2005 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-15703386

RESUMO

Mitochondria release proteins that propagate both caspase-dependent and caspase-independent cell death pathways. AIF (apoptosis-inducing factor) is an important caspase-independent death regulator in multiple neuronal injury pathways. Presently, there is considerable controversy as to whether AIF is neuroprotective or proapoptotic in neuronal injury, such as oxidative stress or excitotoxicity. To evaluate the role of AIF in BAX-dependent (DNA damage induced) and BAX-independent (excitotoxic) neuronal death, we used Harlequin (Hq) mice, which are hypomorphic for AIF. Neurons carrying double mutations for Hq/Apaf1-/- (apoptosis proteases-activating factor) are impaired in both caspase-dependent and AIF-mediated mitochondrial cell death pathways. These mutant cells exhibit extended neuroprotection against DNA damage, as well as glutamate-induced excitotoxicity. Specifically, AIF is involved in NMDA- and kainic acid- but not AMPA-induced excitotoxicity. In vivo excitotoxic studies using kainic acid-induced seizure showed that Hq mice had significantly less hippocampal damage than wild-type littermates. Our results demonstrate an important role for AIF in both BAX-dependent and BAX-independent mechanisms of neuronal injury.


Assuntos
Apoptose/fisiologia , Flavoproteínas/fisiologia , Proteínas de Membrana/fisiologia , Neurônios/citologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Animais , Fator de Indução de Apoptose , Fator Apoptótico 1 Ativador de Proteases , Benzodiazepinas/farmacologia , Benzotiadiazinas/farmacologia , Camptotecina/farmacologia , Inibidores de Caspase , Células Cultivadas/citologia , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Cerebelo/citologia , Córtex Cerebral/citologia , Convulsivantes/toxicidade , Maleato de Dizocilpina/farmacologia , Resistência a Medicamentos , Flavoproteínas/genética , Ácido Glutâmico/farmacologia , Glicina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Ácido Caínico/farmacologia , Ácido Caínico/toxicidade , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Mutantes , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurotoxinas/farmacologia , Proteínas/genética , Proteínas Recombinantes de Fusão/fisiologia , Convulsões/induzido quimicamente , Convulsões/metabolismo , Convulsões/patologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Proteína X Associada a bcl-2
3.
J Neurosci ; 24(44): 10003-12, 2004 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-15525786

RESUMO

The p53 tumor suppressor gene has been implicated in the regulation of apoptosis in a number of different neuronal death paradigms. Because of the importance of p53 in neuronal injury, we questioned the mechanism underlying p53-mediated apoptosis in neurons. Using adenoviral-mediated gene delivery, reconstitution experiments, and mice carrying a knock-in mutation in the endogenous p53 gene, we show that the transactivation function of p53 is essential to induce neuronal cell death. Although p53 possesses two transactivation domains that can activate p53 targets independently, we demonstrate that the first activation domain (ADI) is required to drive apoptosis after neuronal injury. Furthermore, the BH3-only proteins Noxa and PUMA exhibit differential regulation by the two transactivation domains. Here, we show that Noxa can be induced by either activation domain, whereas PUMA induction requires both activation domains to be intact. Unlike Noxa, the upregulation of PUMA alone is sufficient to induce neuronal cell death. We demonstrate, therefore, that the first transactivation domain of p53 is indispensable for the induction of neuronal cell death.


Assuntos
Apoptose/fisiologia , Neurônios/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Motivos de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose , Células Cultivadas , Dano ao DNA/fisiologia , Camundongos , Camundongos Knockout , Mutação Puntual , Estrutura Terciária de Proteína , Ativação Transcricional/fisiologia , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/fisiologia , Regulação para Cima
4.
Sci STKE ; 2004(251): PE45, 2004 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-15383672

RESUMO

Extracellular signal-regulated kinases (ERKs) are traditionally viewed as a survival factor in the mitogen-activated protein kinase (MAPK) family. On the other hand, some recent reports have suggested that ERK can also be responsible for neuronal cell death in various neurodegeneration models. In-depth studies on the action of ERK in apoptosis, however, have not been done. A recent study has revealed that ERK is a key apoptotic factor in potassium deprivation-induced neuronal cell death by showing that ERK inhibitors protect neurons from low potassium conditions, whereas constitutively activated ERK activates cell death. Most important, this study shows how ERK can promote neuronal cell death by causing plasma membrane and DNA damage that is independent of caspase-3 activity. Further studies on the mechanism of ERK in neuronal cell death will shed light on the possibility of using ERK as a therapeutic target in treating neurodegeneration.


Assuntos
Apoptose/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Neurônios/fisiologia , Animais , Humanos , Neurônios/enzimologia
5.
Apoptosis ; 12(5): 979-92, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17453163

RESUMO

Mitochondria undergo continuous fission and fusion events in physiological situations. Fragmentation of mitochondria during cell death has been shown to play a key role in cell death progression, including release of the mitochondrial apoptotic proteins. Ultrastructural changes in mitochondria, such as cristae remodeling, is also involved in cell death initiation. Here, we emphasize the important role of mitochondrial fission/fusion machinery in neuronal cell death. Unlike many other cell types such as immortalized cell lines, neurons are distinct morphologically and functionally. We will discuss how this uniqueness presents special challenges in the cellular response to neurotoxic stresses, and how this affects the mitochondrial dynamics in the regulation of cell death in neurons.


Assuntos
Morte Celular/fisiologia , Mitocôndrias/fisiologia , Neurônios/fisiologia , Animais , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Neurônios/citologia
6.
J Biol Chem ; 282(33): 23788-98, 2007 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-17537722

RESUMO

Of the GTPases involved in the regulation of the fusion machinery, mitofusin 2 (Mfn2) plays an important role in the nervous system as point mutations of this isoform are associated with Charcot Marie Tooth neuropathy. Here, we investigate whether Mfn2 plays a role in the regulation of neuronal injury. We first examine mitochondrial dynamics following different modes of injury in cerebellar granule neurons. We demonstrate that neurons exposed to DNA damage or oxidative stress exhibit extensive mitochondrial fission, an early event preceding neuronal loss. The extent of mitochondrial fragmentation and remodeling is variable and depends on the mode and the severity of the death stimuli. Interestingly, whereas mitofusin 2 loss of function significantly induces cell death in the absence of any cell death stimuli, expression of mitofusin 2 prevents cell death following DNA damage, oxidative stress, and K+ deprivation induced apoptosis. More importantly, whereas wild-type Mfn2 and the hydrolysis-deficient mutant of Mfn2 (Mfn2(RasG12V)) function equally to promote fusion and lengthening of mitochondria, the activated Mfn2(RasG12V) mutant shows a significant increase in the protection of neurons against cell death and release of proapoptotic factor cytochrome c. These findings highlight a signaling role for Mfn2 in the regulation of apoptosis that extends beyond its role in mitochondrial fusion.


Assuntos
Cerebelo/citologia , Proteínas de Membrana/fisiologia , Mitocôndrias/patologia , Proteínas Mitocondriais/fisiologia , Neurônios/ultraestrutura , Animais , Apoptose , Morte Celular , Linhagem Celular , Doença de Charcot-Marie-Tooth/etiologia , Dano ao DNA , GTP Fosfo-Hidrolases , Humanos , Fusão de Membrana , Proteínas de Membrana/genética , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Neurônios/citologia , Estresse Oxidativo , Transfecção
7.
EMBO J ; 25(17): 4061-73, 2006 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-16917506

RESUMO

The mitochondrial protein apoptosis-inducing factor (AIF) translocates to the nucleus and induces apoptosis. Recent studies, however, have indicated the importance of AIF for survival in mitochondria. In the absence of a means to dissociate these two functions, the precise roles of AIF remain unclear. Here, we dissociate these dual roles using mitochondrially anchored AIF that cannot be released during apoptosis. Forebrain-specific AIF null (tel. AifDelta) mice have defective cortical development and reduced neuronal survival due to defects in mitochondrial respiration. Mitochondria in AIF deficient neurons are fragmented with aberrant cristae, indicating a novel role of AIF in controlling mitochondrial structure. While tel. AifDelta Apaf1(-/-) neurons remain sensitive to DNA damage, mitochondrially anchored AIF expression in these cells significantly enhanced survival. AIF mutants that cannot translocate into nucleus failed to induce cell death. These results indicate that the proapoptotic role of AIF can be uncoupled from its physiological function. Cell death induced by AIF is through its proapoptotic activity once it is translocated to the nucleus, not due to the loss of AIF from the mitochondria.


Assuntos
Fator de Indução de Apoptose/fisiologia , Apoptose , Mitocôndrias/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Fator de Indução de Apoptose/genética , Sobrevivência Celular , Células Cultivadas , Dano ao DNA , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Neurônios/fisiologia , Neurônios/ultraestrutura , Consumo de Oxigênio , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA