Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Gastroenterol Hepatol ; 36(4): 817-822, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33880761

RESUMO

Gastrointestinal cancer maintains the highest incidence and mortality rate among all cancers globally. In addition to genetic causes, it has been reported that individuals' diet and composition of the gastrointestinal microbiome have profound impacts on gastrointestinal cancer development. Microbiome research has risen in popularity to provide alternative insights into cancer development and potential therapeutic effect. However, there is a lack of an effective analytical tool to comprehend the massive amount of data generated from high-throughput sequencing methods. Artificial intelligence is another rapidly developing field that has strong application potential in microbiome research. Deep learning and machine learning are two subfields under the umbrella of artificial intelligence. Here we discuss the current approaches to study the gut microbiome, as well as the applications and challenges of implementing artificial intelligence in microbiome research.


Assuntos
Inteligência Artificial , Microbioma Gastrointestinal , Neoplasias Gastrointestinais/microbiologia , Projetos de Pesquisa , Pesquisa/tendências , Aprendizado Profundo , Neoplasias Gastrointestinais/etiologia , Neoplasias Gastrointestinais/terapia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Aprendizado de Máquina
2.
Cancer Res ; 84(17): 2856-2872, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-38900944

RESUMO

The N6-methyladenosine (m6A) RNA-binding protein YTHDF1 is frequently overexpressed in colorectal cancer and drives chemotherapeutic resistance. To systematically identify druggable targets in colorectal cancer with high expression of YTHDF1, this study used a CRISPR/Cas9 screening strategy that revealed RUVBL1 and RUVBL2 as putative targets. RUVBL1/2 were overexpressed in primary colorectal cancer samples and represented independent predictors of poor patient prognosis. Functionally, loss of RUVBL1/2 preferentially impaired the growth of YTHDF1-high colorectal cancer cells, patient-derived primary colorectal cancer organoids, and subcutaneous xenografts. Mechanistically, YTHFD1 and RUVBL1/2 formed a positive feedforward circuit to accelerate oncogenic translation. YTHDF1 bound to m6A-modified RUVBL1/2 mRNA to promote translation initiation and protein expression. Coimmunoprecipitation and mass spectrometry identified that RUVBL1/2 reciprocally interacted with YTHDF1 at 40S translation initiation complexes. Consequently, RUVBL1/2 depletion stalled YTHDF1-driven oncogenic translation and nascent protein biosynthesis, leading to proliferative arrest and apoptosis. Ribosome sequencing revealed that RUVBL1/2 loss impaired the activation of MAPK, RAS, and PI3K-AKT signaling induced by YTHDF1. Finally, the blockade of RUVBL1/2 by the pharmacological inhibitor CB6644 or vesicle-like nanoparticle-encapsulated siRNAs preferentially arrested the growth of YTHDF1-expressing colorectal cancer in vitro and in vivo. Our findings show that RUVBL1/2 are potential prognostic markers and druggable targets that regulate protein translation in YTHDF1-high colorectal cancer. Significance: RUVBL1/2 inhibition is a therapeutic strategy to abrogate YTHDF1-driven oncogenic translation and overcome m6A dysregulation in colorectal cancer.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Adenosina , Neoplasias Colorretais , DNA Helicases , Proteínas de Ligação a RNA , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Camundongos , DNA Helicases/genética , DNA Helicases/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/antagonistas & inibidores , Adenosina/análogos & derivados , Adenosina/metabolismo , Carcinogênese/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Biossíntese de Proteínas , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Prognóstico
3.
FEMS Microbiol Rev ; 47(4)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407433

RESUMO

The gut microbiota plays a crucial role in regulating various host metabolic, immune, and neuroendocrine functions, and has a significant impact on human health. Several lines of evidence suggest that gut dysbiosis is associated with a variety of diseases, including cancer. The gut microbiota can impact the development and progression of cancer through a range of mechanisms, such as regulating cell proliferation and death, modulating the host immune response, and altering the host metabolic state. Gene regulatory programs are considered critical mediators between the gut microbiota and host phenotype, of which RNA N6-methyladenosine (m6A) modifications have attracted much attention recently. Aberrant m6A modifications have been shown to play a crucial role in cancer development. This review aims to provide an overview of the diverse roles of gut microbiota and RNA m6A modifications in cancer and highlight their potential interactions in cancer development.


Assuntos
Microbioma Gastrointestinal , Neoplasias , Humanos , Microbioma Gastrointestinal/genética , Proliferação de Células , Neoplasias/genética , RNA
4.
Cancers (Basel) ; 14(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35884552

RESUMO

N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic cell mRNA, and this modification plays a key role in regulating mRNA translation, splicing, and stability. Emerging evidence implicates aberrant m6A as a crucial player in the occurrence and development of diseases, especially GI cancers. Among m6A regulators, YTHDF1 is the most abundant m6A reader that functionally connects m6A-modified mRNA to its eventual fate, mostly notably protein translation. Here, we summarized the function, molecular mechanisms, and clinical implications of YTHDF1 in GI cancers. YTHDF1 is largely upregulated in multiple GI cancer and its high expression predicts poor patient survival. In vitro and in vivo experimental evidence largely supports the role of YTDHF1 in promoting cancer initiation, progression, and metastasis, which suggests the oncogenic function of YTHDF1 in GI cancers. Besides, YTHDF1 overexpression is associated with changes in the tumor microenvironment that are favorable to tumorigenesis. Mechanistically, YTHDF1 regulates the expression of target genes by promoting translation, thereby participating in cancer-related signaling pathways. Targeting YTHDF1 holds therapeutic potential, as the overexpression of YTHDF1 is associated with tumor resistance to chemotherapy and immunotherapy. In summary, YTHDF1-mediated regulation of m6A modified mRNA is an actionable target and a prognostic factor for GI cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA