Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Nano ; 18(8): 6424-6437, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38354368

RESUMO

The interactions of ligand-functionalized nanoparticles with the cell membrane affect cellular uptake, cytotoxicity, and related behaviors, but relating these interactions to ligand properties remains challenging. In this work, we perform coarse-grained molecular dynamics simulations to study how the adsorption of ligand-functionalized cationic gold nanoparticles (NPs) to a single-component lipid bilayer (as a model cell membrane) is influenced by ligand end group lipophilicity. A set of 2 nm diameter NPs, each coated with a monolayer of organic ligands that differ only in their end groups, was simulated to mimic NPs recently studied experimentally. Metadynamics calculations were performed to determine key features of the free energy landscape for adsorption as a function of the distance of the NP from the bilayer and the number of NP-lipid contacts. These simulations revealed that NP adsorption is thermodynamically favorable for all NPs due to the extraction of lipids from the bilayer and into the NP monolayer. To resolve ligand-dependent differences in adsorption behavior, string method calculations were performed to compute minimum free energy pathways for adsorption. These calculations revealed a surprising nonmonotonic dependence of the free energy barrier for adsorption on ligand end group lipophilicity. Large free energy barriers are predicted for the least lipophilic end groups because favorable NP-lipid contacts are initiated only through the unfavorable protrusion of lipid tail groups out of the bilayer. The smallest free energy barriers are predicted for end groups of intermediate lipophilicity which promote NP-lipid contacts by intercalating within the bilayer. Unexpectedly, large free energy barriers are also predicted for the most lipophilic end groups which remain sequestered within the ligand monolayer rather than intercalating within the bilayer. These trends are broadly in agreement with past experimental measurements and reveal how subtle variations in ligand lipophilicity dictate adsorption mechanisms and associated kinetics by influencing the interplay of lipid-ligand interactions.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Bicamadas Lipídicas/metabolismo , Ligantes , Adsorção , Ouro , Simulação de Dinâmica Molecular
2.
J Cheminform ; 16(1): 31, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486289

RESUMO

In materials science, accurately computing properties like viscosity, melting point, and glass transition temperatures solely through physics-based models is challenging. Data-driven machine learning (ML) also poses challenges in constructing ML models, especially in the material science domain where data is limited. To address this, we integrate physics-informed descriptors from molecular dynamics (MD) simulations to enhance the accuracy and interpretability of ML models. Our current study focuses on accurately predicting viscosity in liquid systems using MD descriptors. In this work, we curated a comprehensive dataset of over 4000 small organic molecules' viscosities from scientific literature, publications, and online databases. This dataset enabled us to develop quantitative structure-property relationships (QSPR) consisting of descriptor-based and graph neural network models to predict temperature-dependent viscosities for a wide range of viscosities. The QSPR models reveal that including MD descriptors improves the prediction of experimental viscosities, particularly at the small data set scale of fewer than a thousand data points. Furthermore, feature importance tools reveal that intermolecular interactions captured by MD descriptors are most important for viscosity predictions. Finally, the QSPR models can accurately capture the inverse relationship between viscosity and temperature for six battery-relevant solvents, some of which were not included in the original data set. Our research highlights the effectiveness of incorporating MD descriptors into QSPR models, which leads to improved accuracy for properties that are difficult to predict when using physics-based models alone or when limited data is available.

3.
J Chem Theory Comput ; 19(5): 1553-1567, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36812112

RESUMO

Molecular dynamics (MD) simulations are used in diverse scientific and engineering fields such as drug discovery, materials design, separations, biological systems, and reaction engineering. These simulations generate highly complex data sets that capture the 3D spatial positions, dynamics, and interactions of thousands of molecules. Analyzing MD data sets is key for understanding and predicting emergent phenomena and in identifying key drivers and tuning design knobs of such phenomena. In this work, we show that the Euler characteristic (EC) provides an effective topological descriptor that facilitates MD analysis. The EC is a versatile, low-dimensional, and easy-to-interpret descriptor that can be used to reduce, analyze, and quantify complex data objects that are represented as graphs/networks, manifolds/functions, and point clouds. Specifically, we show that the EC is an informative descriptor that can be used for machine learning and data analysis tasks such as classification, visualization, and regression. We demonstrate the benefits of the proposed approach through case studies that aim to understand and predict the hydrophobicity of self-assembled monolayers and the reactivity of complex solvent environments.

4.
ACS Nano ; 16(4): 6282-6292, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35289596

RESUMO

Gold nanoparticles are versatile materials for biological applications because their properties can be modulated by assembling ligands on their surface to form monolayers. However, the physicochemical properties and behaviors of monolayer-protected nanoparticles in biological environments are difficult to anticipate because they emerge from the interplay of ligand-ligand and ligand-solvent interactions that cannot be readily inferred from ligand chemical structure alone. In this work, we demonstrate that quantitative nanostructure-activity relationship (QNAR) models can employ descriptors calculated from molecular dynamics simulations to predict nanoparticle properties and cellular uptake. We performed atomistic molecular dynamics simulations of 154 monolayer-protected gold nanoparticles and calculated a small library of simulation-derived descriptors that capture nanoparticle structural and chemical properties in aqueous solution. We then parametrized QNAR models using interpretable regression algorithms to predict experimental measurements of nanoparticle octanol-water partition coefficients, zeta potentials, and cellular uptake obtained from a curated database. These models reveal that simulation-derived descriptors can accurately predict experimental trends and provide physical insight into what descriptors are most important for obtaining desired nanoparticle properties or behaviors in biological environments. Finally, we demonstrate model generalizability by predicting cell uptake trends for 12 nanoparticles not included in the original data set. These results demonstrate that QNAR models parametrized with simulation-derived descriptors are accurate, generalizable computational tools that could be used to guide the design of monolayer-protected gold nanoparticles for biological applications without laborious trial-and-error experimentation.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Ouro/química , Nanopartículas Metálicas/química , Ligantes , Simulação de Dinâmica Molecular , Nanoestruturas/química , Água
5.
ACS Nano ; 15(3): 4534-4545, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33621066

RESUMO

The hydrophobicity of monolayer-protected gold nanoparticles is a crucial design parameter that influences self-assembly, preferential binding to proteins and membranes, and other nano-bio interactions. Predicting the effects of monolayer components on nanoparticle hydrophobicity is challenging due to the nonadditive, cooperative perturbations to interfacial water structure that dictate hydrophobicity at the nanoscale. In this work, we quantify nanoparticle hydrophobicity by using atomistic molecular dynamics simulations to calculate local hydration free energies at the nanoparticle-water interface. The simulations reveal that the hydrophobicity of large gold nanoparticles is determined primarily by ligand end group chemistry, as expected. However, for small gold nanoparticles, long alkanethiol ligands interact to form anisotropic bundles that lead to substantial spatial variations in hydrophobicity even for homogeneous monolayer compositions. We further show that nanoparticle hydrophobicity is modulated by changing the ligand structure, ligand chemistry, and gold core size, emphasizing that single-ligand properties alone are insufficient to characterize hydrophobicity. Finally, we illustrate that hydration free energy measurements correlate with the preferential binding of propane as a representative hydrophobic probe molecule. Together, these results show that both physical and chemical properties influence the hydrophobicity of small nanoparticles and must be considered together when predicting gold nanoparticle interactions with biomolecules.


Assuntos
Ouro , Nanopartículas Metálicas , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Simulação de Dinâmica Molecular
6.
ACS Nano ; 15(4): 6562-6572, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33818061

RESUMO

A mechanistic understanding of the influence of the surface properties of engineered nanomaterials on their interactions with cells is essential for designing materials for applications such as bioimaging and drug delivery as well as for assessing nanomaterial safety. Ligand-coated gold nanoparticles have been widely investigated because their highly tunable surface properties enable investigations into the effect of ligand functionalization on interactions with biological systems. Lipophilic ligands have been linked to adverse biological outcomes through membrane disruption, but the relationship between ligand lipophilicity and membrane interactions is not well understood. Here, we use a library of cationic ligands coated on 2 nm gold nanoparticles to probe the impact of ligand end group lipophilicity on interactions with supported phosphatidylcholine lipid bilayers as a model for cytoplasmic membranes. Nanoparticle adsorption to and desorption from the model membranes were investigated by quartz crystal microbalance with dissipation monitoring. We find that nanoparticle adsorption to model membranes increases with ligand lipophilicity. The effects of ligand structure on gold nanoparticle attachment were further analyzed using atomistic molecular dynamics simulations, which showed that the increase in ligand lipophilicity promotes ligand intercalation into the lipid bilayer. Together, the experimental and simulation results could be described by a two-state model that accounts for the initial attachment and subsequent conversion to a quasi-irreversibly bound state. We find that only nanoparticles coated with the most lipophilic ligands in our nanoparticle library undergo conversion to the quasi-irreversible state. We propose that the initial attachment is governed by interaction between the ligands and phospholipid tail groups, whereas conversion into the quasi-irreversibly bound state reflects ligand intercalation between phospholipid tail groups and eventual lipid extraction from the bilayer. The systematic variation of ligand lipophilicity enabled us to demonstrate that the lipophilicity of cationic ligands correlates with nanoparticle-bilayer adsorption and suggested that changing the nonpolar ligand R group promotes a mechanism of ligand intercalation into the bilayer associated with irreversible adsorption.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Adsorção , Ouro , Ligantes , Bicamadas Lipídicas
7.
Chem Sci ; 11(46): 12464-12476, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34094451

RESUMO

The rates of liquid-phase, acid-catalyzed reactions relevant to the upgrading of biomass into high-value chemicals are highly sensitive to solvent composition and identifying suitable solvent mixtures is theoretically and experimentally challenging. We show that the complex atomistic configurations of reactant-solvent environments generated by classical molecular dynamics simulations can be exploited by 3D convolutional neural networks to enable accurate predictions of Brønsted acid-catalyzed reaction rates for model biomass compounds. We develop a 3D convolutional neural network, which we call SolventNet, and train it to predict acid-catalyzed reaction rates using experimental reaction data and corresponding molecular dynamics simulation data for seven biomass-derived oxygenates in water-cosolvent mixtures. We show that SolventNet can predict reaction rates for additional reactants and solvent systems an order of magnitude faster than prior simulation methods. This combination of machine learning with molecular dynamics enables the rapid, high-throughput screening of solvent systems and identification of improved biomass conversion conditions.

8.
Sci Adv ; 6(47)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33219017

RESUMO

Many plastic packaging materials manufactured today are composites made of distinct polymer layers (i.e., multilayer films). Billions of pounds of these multilayer films are produced annually, but manufacturing inefficiencies result in large, corresponding postindustrial waste streams. Although relatively clean (as opposed to municipal wastes) and of near-constant composition, no commercially practiced technologies exist to fully deconstruct postindustrial multilayer film wastes into pure, recyclable polymers. Here, we demonstrate a unique strategy we call solvent-targeted recovery and precipitation (STRAP) to deconstruct multilayer films into their constituent resins using a series of solvent washes that are guided by thermodynamic calculations of polymer solubility. We show that the STRAP process is able to separate three representative polymers (polyethylene, ethylene vinyl alcohol, and polyethylene terephthalate) from a commercially available multilayer film with nearly 100% material efficiency, affording recyclable resins that are cost-competitive with the corresponding virgin materials.

9.
Front Chem ; 7: 439, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275924

RESUMO

The solution-phase stability of the hydronium ion catalyst significantly affects the rates of acid-catalyzed reactions, which are ubiquitously utilized to convert biomass to valuable chemicals. In this work, classical molecular dynamics simulations were performed to quantify the stability of hydronium and chloride ions by measuring their solvation free energies in water, 1,4-dioxane (DIOX), tetrahydrofuran (THF), γ-valerolactone (GVL), N-methyl-2-pyrrolidone (NMP), acetone (ACE), and dimethyl sulfoxide (DMSO). By measuring the free energy for transferring a hydronium ion from pure water to pure organic solvent, we found that the hydronium ion is destabilized in DIOX, THF, and GVL and stabilized in NMP, ACE, and DMSO relative to water. The distinction between these organic solvents can be used to predict the preference of the hydronium ion for specific regions in aqueous mixtures of organic solvents. We then incorporated the stability of the hydronium ion into a correlative model for the acid-catalyzed conversion of 1,2-propanediol to propanal. The revised model is able to predict experimental reaction rates across solvent systems with different organic solvents. These results demonstrate the ability of classical molecular dynamics simulations to screen solvent systems for improved acid-catalyzed reaction performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA