Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

País/Região como assunto
País de afiliação
Intervalo de ano de publicação
1.
Helicobacter ; 29(2): e13077, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38682268

RESUMO

BACKGROUND: A novel regimen with high-dose dual therapy (HDDT) has emerged, but its impact on the gut microbiota is not well understood. This study aimed to evaluate the impact of HDDT on the gut microbiota and compare it with that of bismuth quadruple therapy (BQT). METHODS: We enrolled outpatients (18-70 years) diagnosed with Helicobacter pylori infection by either histology or a positive 13C-urea breath test (13C-UBT) and randomly assigned to either the BQT or HDDT group. Subjects consented to provide fecal samples which were collected at baseline, Week 2, and Week 14. Amplification of the V1 and V9 regions of the 16S rRNA was conducted followed by high-throughput sequencing. RESULTS: Ultimately, 78 patients (41 patients in the HDDT group and 37 in the BQT group) were enrolled in this study. Eradication therapy significantly altered the diversity of the gut microbiota. However, the alpha diversity rebounded only in the HDDT group at 12 weeks post-eradication. Immediately following eradication, the predominance of Proteobacteria, replacing commensal Firmicutes and Bacteroidetes, did not recover after 12 weeks. Species-level analysis showed that the relative abundances of Klebsiella pneumoniae and Escherichia fergusonii significantly increased in both groups at Week 2. Enterococcus faecium and Enterococcus faecalis significantly increased in the BQT group, with no significant difference observed in the HDDT group. After 12 weeks of treatment, the relative abundance of more species in the HDDT group returned to baseline levels. CONCLUSION: Eradication of H. pylori can lead to an imbalance in gut microbiota. Compared to BQT, the HDDT is a regimen with milder impact on gut microbiota.


Assuntos
Antibacterianos , Bismuto , Quimioterapia Combinada , Microbioma Gastrointestinal , Infecções por Helicobacter , Helicobacter pylori , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Antibacterianos/uso terapêutico , Antibacterianos/administração & dosagem , Bactérias/classificação , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bismuto/uso terapêutico , Bismuto/administração & dosagem , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/fisiologia , Inibidores da Bomba de Prótons/uso terapêutico , Inibidores da Bomba de Prótons/administração & dosagem , RNA Ribossômico 16S/genética
2.
Molecules ; 28(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36615323

RESUMO

A novel two-dimensional copper(II) framework (LDU-1), formulated as {[Cu2(L)2·2NMP}n (H2L = flavone-6,2'-dicarboxylic acid, NMP = N-Methyl pyrrolidone), has been constructed under solvothermal conditions and characterized by single-crystal X-ray diffraction, infrared spectroscopy (IR), thermogravimetric analysis and powder X-ray diffraction (PXRD). In the crystal structure, the Cu(II) shows hex-coordinated with the classical Cu paddle-wheel coordination geometry, and the flavonoid ligand coordinates with the Cu(II) ion in a bidentate bridging mode. Of particular interest of LDU-1 is the presence of anti-tumor activity against three human cancer cell lines including lung adenocarcinoma(A549), Michigan cancer foundation-7 (MCF-7), erythroleukemia (K562) and murine melanoma B16F10, indicating synergistic enhancement effects between metal ions and organic linkers. A cell cycle assay indicates that LDU-1 induces cells to arrest at S phase obviously at a lower concentration.


Assuntos
Flavonas , Neoplasias , Animais , Humanos , Camundongos , Cristalografia por Raios X , Difração de Raios X , Linhagem Celular
3.
Appl Microbiol Biotechnol ; 105(20): 7825-7839, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34562115

RESUMO

Phenazine-1-carboxylic acid and pyrrolnitrin, the two secondary metabolites produced by Pseudomonas chlororaphis G05, serve as biocontrol agents that mainly contribute to the growth repression of several fungal phytopathogens. Although some regulators of phenazine-1-carboxylic acid biosynthesis have been identified, the regulatory pathway involving phenazine-1-carboxylic acid synthesis is not fully understood. We isolated a white conjugant G05W03 on X-Gal-containing LB agar during our screening of novel regulator candidates using transposon mutagenesis with a fusion mutant G05Δphz::lacZ as a recipient. By cloning of DNA adjacent to the site of the transposon insertion, we revealed that a LysR-type transcriptional regulator (LTTR) gene, finR, was disrupted in the conjugant G05W03. To confirm the regulatory function of FinR, we constructed the finR-knockout mutant G05ΔfinR, G05Δphz::lacZΔfinR, and G05Δprn::lacZΔfinR, using the wild-type strain G05 and its fusion mutant derivatives as recipient strains, respectively. We found that the expressions of phz and prn operons were dramatically reduced in the finR-deleted mutant. With quantification of the production of antifungal metabolites biosynthesized by the finR-negative strain G05ΔfinR, it was shown that FinR deficiency also led to decreased yield of phenazine-1-carboxylic acid and pyrrolnitrin. In addition, the pathogen inhibition assay confirmed that the production of phenazine-1-carboxylic acid was severely reduced in the absence of FinR. Transcriptional fusions and qRT-PCR verified that FinR could positively govern the transcription of the phz and prn operons. Taken together, FinR is required for antifungal metabolite biosynthesis and crop protection against some fungal pathogens.Key points• A novel regulator FinR was identified by transposon mutagenesis.• FinR regulates antifungal metabolite production.• FinR regulates the phz and prn expression by binding to their promoter regions.


Assuntos
Pseudomonas chlororaphis , Pirrolnitrina , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Fenazinas , Pseudomonas chlororaphis/genética , Pseudomonas chlororaphis/metabolismo
4.
Microb Pathog ; 147: 104409, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32707314

RESUMO

Pyocyanin, a main virulence factor that is produced by Pseudomonas aeruginosa, plays an important role in pathogen-host interaction during infection. Two copies of phenazine-biosynthetic operons on genome, phz1 (phzA1B1C1D1E1F1G1) and phz2 (phzA2B2C2D2E2F2G2), contribute to phenazine biosynthesis. In our previous study, we found that RpoS positively regulates expression of the phz2 operon and pyocyanin biosynthesis in P. aeruginosa PAO1. In this work, when a TetR-family regulator gene, pip, was knocked out, we found that pyocyanin production was dramatically reduced, indicating that Pip positively regulates pyocyanin biosynthesis. With further phenazines quantification and ß-galactosidase assay, we confirmed that Pip positively regulates phz2 expression, but does not regulate phz1 expression. In addition, while the rpoS gene was deleted, expression of pip was down-regulated. Expression of rpoS in the wild-type PAO1 strain, however, was similar to that in the Pip-deficient mutant PAΔpip, suggesting that expression of pip could positively be regulated by RpoS, whereas rpoS could not be regulated by Pip. Taken together, we drew a conclusion that Pip might serve as an intermediate in RpoS-modulated expression of the phz2 operon and pyocyanin biosynthesis in P. aeruginosa.


Assuntos
Pseudomonas aeruginosa , Piocianina , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Óperon , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Fatores de Virulência/genética
5.
Arch Microbiol ; 202(6): 1507-1515, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32222778

RESUMO

Pyocyanin produced by Pseudomonas aeruginosa is a key virulence factor that often causes heavy damages to airway and lung in patients. Conversion of phenazine-1-carboxylic acid to pyocyanin involves an extrametabolic pathway that contains two enzymes encoded, respectively, by phzM and phzS. In this study, with construction of the rpoS-deficient mutant, we first found that although phenazine production increased, pyocyanin produced in the mutant YTΔrpoS was fourfold much higher than that in the wild-type strain YT. To investigate this issue, we constructed phzM-lacZ fusion on a vector and on the chromosome. By quantifying ß-galactosidase activities, we confirmed that expression of the phzM was up-regulated when the rpoS gene was inactivated. However, no changes occurred in the expression of phzS and phzH when the rpoS was knocked out. Taken together, overproduction of the SAM-dependent methyltransferase (PhzM) might contribute to the increased pyocyanin in the absence of RpoS in P. aeruginosa.


Assuntos
Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Metiltransferases/biossíntese , Oxigenases de Função Mista/biossíntese , Pseudomonas aeruginosa/metabolismo , Piocianina/biossíntese , Fator sigma/genética , Humanos , Metiltransferases/genética , Oxigenases de Função Mista/genética , Fenazinas/metabolismo , Pseudomonas aeruginosa/genética , Fatores de Virulência/metabolismo
6.
J Basic Microbiol ; 59(9): 914-923, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31294863

RESUMO

Pseudomonas aeruginosa PAO1, a common opportunistic bacterial pathogen, contains two phenazine-biosynthetic operons, phz1 (phzA1 B1 C1 D1 E1 F1 G1 ) and phz2 (phzA2 B2 C2 D2 E2 F2 G2 ). Each of two operons can independently encode a set of enzymes involving in the biosynthesis of phenazine-1-carboxylic acid. As a global transcriptional regulator, RpoS mediates a lot of genes involving secondary metabolites biosynthesis in many bacteria. In an other previous study, it was reported that RpoS deficiency caused overproduction of pyocyanin, a derivative of phenazine-1-carboxylic acid in P. aeruginosa PAO1. But it is not known how RpoS mediates the expression of each of two phz operons and modulates phenazine-1-carboxylic acid biosynthesis in detail. In this study, by deleting the rpoS gene in the mutant PNΔphz1 and the mutant PNΔphz2, we found that the phz1 operon contributes much more to phenazine-1-carboxylic acid biosynthesis than the phz2 operon in the absence of RpoS. With the construction of the translational and transcriptional fusion vectors with the truncated lacZ reporter gene, we demonstrated that RpoS negatively regulates the expression of phz1 and positively controls the expression of phz2, and the regulation of phenazine-1-carboxylic acid biosynthesis mediated by RopS occurs at the posttranscriptional level, not at the transcriptional level. Obviously, two copies of phz operons and their differential expression mediated by RpoS might help P. aeruginosa adapt to its diverse environments and establish infection in its hosts.


Assuntos
Proteínas de Bactérias/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Fator sigma/genética , Regulação Bacteriana da Expressão Gênica , Óperon/genética , Fenazinas/metabolismo , Deleção de Sequência
7.
J Basic Microbiol ; 58(9): 793-805, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29995319

RESUMO

In previous studies with Pseudomonas chlororaphis G05, two operons (phzABCDEFG and prnABCD) were confirmed to respectively encode enzymes for biosynthesis of phenazine-1-carboxylic acid and pyrrolnitrin that mainly contributed to suppression of some fungal phytopathogens. Although some regulators were identified to govern their expression, it is not known how two operons coordinately interact. By constructing the phz- or/and prn- deletion mutants, we found that in comparison with the wild-type strain G05, phenazine-1-carboxylic acid production in the mutant G05Δprn obviously decreased in GA broth in the absence of prn, and pyrrolnitrin production in the mutant G05Δphz remarkably declined in the absence of phz. By generating the phzA and prnA transcriptional and translational fusions with a truncated lacZ on shuttle vector or on the chromosome, we found that expression of the phz or prn operon was correspondingly increased in the presence of the prn or phz operon at the post-transcriptional level, not at the transcriptional level. These results indicated that the presence of one operon would promote the expression of the other one operon between the phz and prn. This reciprocal enhancement would keep the strain G05 producing more different antifungal compounds coordinately and living better with growth suppression of other microorganisms.


Assuntos
Antifúngicos/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Óperon/genética , Pseudomonas chlororaphis/genética , Antifúngicos/análise , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Mutação , Fenazinas/análise , Fenazinas/metabolismo , Pseudomonas chlororaphis/enzimologia , Pseudomonas chlororaphis/metabolismo , Pirrolnitrina/análise , Pirrolnitrina/metabolismo
8.
Wei Sheng Wu Xue Bao ; 57(2): 229-39, 2017 Feb 04.
Artigo em Zh | MEDLINE | ID: mdl-29750486

RESUMO

Pyocyanin, an important virulence factor, is synthesized and secreted by Pseudomonas aeruginosa PAO1and plays a critical role in pathogen-host interaction during infection. Sigma38 (σ38, σS) is a central regulator for many virulence production in pathogens. Objective: Our aim is to identify expression and regulation of two phenazine-producing operons mediated by the sigma38 factor in Pseudomonas aeruginosa PAO1. Methods: We first cloned the flanking fragments of rpoS from the chromosomal DNA of P. aeruginosa PAO1 and constructed the deletion mutant ΔrpoS with the insertion of gentamycin resistance cassette (aacC1). Complementation of rpoS was then carried out after construction and introduction of pME10S (containing the whole rpoS region). Finally, we created the mutant ΔrpoSphz1 and ΔrpoSphz2, and measured pyocyanin production by these mutants in GA medium, using the parental strain Δphz1 and Δphz2 as controls. Results: In GA medium, pyocyanin production by mutant ΔrpoS increased dramatically in comparison with the wild-type strain PAO1. Production of pyocyanin, however, was decreased to the level of the wild-type strain with complementation of the derivative ΔrpoS harboring pME10S. Mutant ΔrpoSphz2 produced much more pyocyanin than mutant Δphz2. Mutant ΔrpoSphz1, however, produced much less pyocyanin than mutant Δphz1. Conclusion: By positively regulating the expression of phz2 and negatively regulating the phz1, sigma38 factor exerts negative modulation on pyocyanin biosynthesis in P. aeruginosa PAO1.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/metabolismo , Piocianina/biossíntese , Fator sigma/metabolismo , Fatores de Virulência/biossíntese , Proteínas de Bactérias/genética , Óperon , Fenazinas/metabolismo , Pseudomonas aeruginosa/genética , Fator sigma/genética
9.
Wei Sheng Wu Xue Bao ; 53(2): 127-35, 2013 Feb 04.
Artigo em Zh | MEDLINE | ID: mdl-23627105

RESUMO

UNLABELLED: Pseudomonas aeruginosa PAO1, an opportunistic pathogenic bacterium, produces phenazine and its derivatives which play a critical role in pathogen-host interaction during its infection. In a biological control strain P. chlororaphis PCL1391, Pip positively regulates PCN production. OBJECTIVE: Our aim is to identify the function and regulation of an ORF of PA0243 (the homolog of Pip) in Pseudomonas aeruginosa PAO1. METHODS: We first cloned the fragment of the pip gene from the chromosomal DNA of P. aeruginosa PAO1 and constructed the pip-defect mutant PA-PG with the insertion of gentamycin resistance cassette (aacC1). With construction and introduction of pME10P (containing the whole pip gene region) , complementation of the pip was then carried out. With creation of the mutants PA-PD-Z1G and PA-PG-Z2K, phenazine-1-carboxylic acid and pyocyanin were measured in GA medium in relative mutants, respectively. RESULTS: In GA medium, production of phenazine-1-carboxylic acid and pyocyanin in the mutant PA-PG decreased dramatically in comparison with that produced in the wild type strain PAO1. The amounts of phenazine-1-carboxylic acid and pyocyanin, however, were recovered with complementation of the derivative PA-PG bearing pME10P. The production of phenazine-1-carboxylic acid and pyocyanin in mutant PA-PG-Z2K were same to those in parental strain PA-Z2K. Phenazine-1-carboxylic acid and pyocyanin produced by the mutant PA-PD-Z1G were lower than those in the original strain PA-Z1G. CONCLUSION: With these results, it is suggested that Pip exerts positively regulation in phenazine biosynthesis by specifically modulating expression of the phz2 operon, not by mediating expression of the phzl operon in P. aeruginosa PAO1.


Assuntos
Proteínas de Bactérias/metabolismo , Óperon , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Fenazinas/metabolismo , Pseudomonas aeruginosa/genética , Fatores de Transcrição/genética
10.
Yao Xue Xue Bao ; 47(6): 734-8, 2012 Jun.
Artigo em Zh | MEDLINE | ID: mdl-22919720

RESUMO

To investigate the improving effect of inter-chain disulfide formation on protein trans-splicing, we introduce a Cys point mutation at Tyr(664) in heavy chain and at Thr(1826) in light chain of B-domain-deleted FVIII (BDD-FVIII). By co-transfection of COS-7 cell with the two Cys mutated chain genes, the intracellular protein splicing, inter-chain disulfide formation, secreted BDD-FVIII and bioactivity in culture supernatant were observed. The data showed that a strengthened spliced BDD-FVIII with an inter-chain disulfide detected by Western blotting and an elevated secretion of spliced BDD-FVIII (128 +/- 24 ng mL(-1)) compared to control (89 +/- 15 ng mL(-1)), assayed by a sandwich ELISA. A Coatest was performed to assay the secretion of bioactivity in culture supernatant and shown a much higher value (0.94 +/- 0.08 u mL(-1)) compared to that of control (0.62 +/- 0.15 u mL(-1)). It suggests that inter-chain disulfide formation could improve protein trans-splicing based dual-vector delivery of BDD-FVIII gene providing experimental evidence for ongoing in vivo study.


Assuntos
Cisteína/genética , Fator VIII/genética , Mutação , Fragmentos de Peptídeos/genética , Processamento de Proteína , Animais , Células COS , Chlorocebus aethiops , Cisteína/metabolismo , Dissulfetos/metabolismo , Fator VIII/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos , Fragmentos de Peptídeos/metabolismo , Transfecção
11.
Yao Xue Xue Bao ; 47(1): 39-44, 2012 Jan.
Artigo em Zh | MEDLINE | ID: mdl-22493803

RESUMO

In our recent study by exploring an intein-based dual-vector to deliver a B-domain-deleted FVIII (BDD-FVIII) gene, it showed that covalently ligated intact BDD-FVIII molecules with a specific coagulant activity could be produced from expressed heavy and light chains by protein trans-splicing. Here, we assessed the hypothesis that the efficiency of trans-splicing may be increased by adding to the intein sequences a pair of leucine zippers that are known to bring about specific and strong protein binding. The intein-fused heavy and light chain genes were co-transferred into cultured COS-7 cells using a dual-vector system. After transient expression, the intracellular BDD-FVIII splicing was observed and the spliced BDD-FVIII and bioactivity secreted to culture media were quantitatively analyzed. An enhanced splicing of BDD-FVIII with decreased protein precursors from gene co-transfected cells was observed by Western blotting. The amount of spliced BDD-FVIII and bioactivity secreted to the culture media were 106 +/- 12 ng x mL(-1) and 0.89 +/- 0.11 U x mL(-1) analyzed by ELISA and Coatest method respectively, which was greater than leucine zipper free intein-fused heavy and light chain genes co-transfected cells (72 +/- 10 ng x mL(-1) and 0.62 +/- 0.07 U x mL(-1)). The activity of cellular mechanism-independent protein splicing was also improved, as showed by the increasing of spliced BDD-FVIII and bioactivity in culture media from combined cells separately transfected with heavy and light chain genes which was 36 +/- 11 ng x mL(-1) and 0.28 +/- 0.09 U x mL(-1). It demonstrated that the leucine zippers could be used to increase the efficiency of protein trans-splicing to improve the efficacy of a dual-vector mediated BDD-FVIII gene delivery by strengthening the interaction between the two intein-pieces fused to heavy and light chains. It provided evidence for further study in animal model using a dual-adeno-associated virus vector to deliver FVIII gene in vivo.


Assuntos
Fator VIII , Vetores Genéticos , Inteínas , Zíper de Leucina , Fragmentos de Peptídeos , Processamento de Proteína , Animais , Células COS , Chlorocebus aethiops , Fator VIII/química , Fator VIII/genética , Fator VIII/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Trans-Splicing , Transfecção
12.
Braz J Microbiol ; 43(2): 490-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24031856

RESUMO

This study aimed at optimizing the medium of a new Ganoderma lucidum strain CAU5501 to enhance the yield of exopolysaccharides (EPS) and mycelial growth. Firstly, the suitable level of glucose, magnesium, phosphate and C/N ratio was determined by single factor experiment. Subsequently, the optimum concentrations of these medium components were investigated using the orthogonal matrix method. The results indicated that the higher levels of EPS were correlated with the level of cell growth when glucose concentration was studied (data no show). The optimum medium for EPS yield was found to be 70 g/l glucose, 5 C/N ratio, 2.5 g/l KH2PO4, 0.75 g/l MgSO4·7H2O, and for mycelial growth was 50 g/l glucose, 5 C/N ratio, 1.5 g/l KH2PO4, 0.5 g/l MgSO4·7H2O. When cultivated in the obtained optimal media in 3 L shake flask, compared to the basal medium, the EPS yield increased markedly from 1.003 to 1.723 g/l, and the mycelium formation was also markedly improved from 2.028 to 7.235 g/l. Results obtained in this study are beneficial to further study for enhancing the production of Ganoderma lucidum polysaccharides in large scale commercialized production.

13.
Wei Sheng Wu Xue Bao ; 52(11): 1326-34, 2012 Nov 04.
Artigo em Zh | MEDLINE | ID: mdl-23383503

RESUMO

UNLABELLED: In many Pseudomonas, RsmA mediates the production of a set of secondary metabolites or virulence factors. OBJECTIVE: Our aim is to evaluate the function and regulation of the rsmA gene on two phenazine-producing operons in Pseudomonas aeruginosa PAO1. METHODS: We first cloned the upstream and downstream fragments of the rsmA gene from the chromosomal DNA. With the insertion of gentamycin resistance cassette (aacC1), the deletion mutant PA-RG was created and verified with PCR. To complement and overexpress the rsmA gene, pME10R and pME32R were also constructed. By constructing the translational fusion plasmids phz1'-'lacZ pMEZ1 and phz2'-'lacZ pMEZ2, we introduced them into the wild type strain PAO1 and the mutant PA-RG, respectively. Activities of beta-galactosidase were determined with Miller method. RESULTS: In glycerol-alanine medium, overexpression of the rsmA gene results in dramatical decrease of pyocyanin production in PA-RG and PAO1 strain. In addition, beta-galactosidase activity of phz1'-'lacZ in the mutant PA-RG was much higher than that in the wild type strain. However, beta-galactosidase activity of phz2'-'lacZ in the wild type strain was 2fold more than that in the mutant PA-RG. CONCLUSION: The regulation mediated by RsmA on two phenazine loci is specific and differential.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fenazinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Regulação para Baixo , Genes Reguladores , Óperon , Pseudomonas aeruginosa/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
14.
Microbiol Res ; 260: 127050, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35504237

RESUMO

Pseudomonas chlororaphis G05 has the capability to repress the mycelial growth of many phytopathogenic fungi by producing and secreting certain antifungal compounds, including phenazines and pyrrolnitrin. Although some regulatory genes have been identified to be involved in antifungal metabolite production, the regulatory mechanism and pathway of phenazine-1-carboxylic acid biosynthesis remain poorly defined. To identify more new regulatory genes, we applied transposon mutagenesis with the chromosomal lacZ fusion strain G05Δphz::lacZ as an acceptor. In the white conjugant colony G05W05, a novel transcriptional regulator gene, eppR, was verified to be interrupted by the transposon mini-Tn5Kan. To evaluate the specific function of eppR, we created a set of eppR-deletion mutants, including G05ΔeppR, G05Δphz::lacZΔeppR and G05Δprn::lacZΔeppR. By quantifying the production of antifungal compounds and ß-galactosidase expression, we found that the expression of the phenazine biosynthetic gene cluster (phz) and the production of phenazine-1-carboxylic acid were markedly reduced in the absence of EppR. Moreover, the pathogen suppression test verified that the yield of phenazine-1-carboxylic acid was significantly decreased when eppR was deleted in frame. At the same time, no changes in the expression of the phzI/phzR quorum-sensing (QS) system and the production of N-acyl homoserine lactones (AHLs) and pyrrolnitrin were found in the EppR-deficient mutant. In addition, chromosomal fusion analyses and quantitative real-time polymerase chain reaction (qRT-PCR) results also showed that EppR could positively mediate the expression of the phz cluster at the posttranscriptional level. In summary, EppR is specifically essential for phenazine biosynthesis but not for pyrrolnitrin biosynthesis in P. chlororaphis.


Assuntos
Pseudomonas chlororaphis , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fenazinas/metabolismo , Pseudomonas chlororaphis/genética , Pseudomonas chlororaphis/metabolismo , Pirrolnitrina/metabolismo
15.
Yao Xue Xue Bao ; 46(12): 1457-61, 2011 Dec.
Artigo em Zh | MEDLINE | ID: mdl-22375418

RESUMO

Although two chain transfering separately could be used to overcome the volume limitation of adeno-associated virus vectors (AAV) in coagulation factor VIII (FVIII) gene delivery, it leads to chain imbalance for inefficient heavy chain secretion. In this study we aimed to improve the efficacy of two chain strategy in FVIII gene delivery through the degradation of glucose-regulated protein 78 (GRP78) known as a protein chaperone in endoplasmic reticulum (ER) by deoxynivalenol (DON) to decrease GRP78-bound FVIII heavy chain. By treating the two-chain gene transduced 293 cells with DON, the heavy chain (HC) secretion and FVIII bioactivity were observed. Data showed that 293 cells after three hours post-treatment with DON at a concentration of 500 ng mL(-1) resulted in obvious decrease the level of GRP78 but no effect on the cell proliferation. The HC secreted from DON-treated cells transfected with HC gene alone was 59 +/- 11 ng mL(-1), higher than that secreted by control cells (15 +/- 4 ng mL(-1)), and the HC secretion was further increasing to 146 +/- 34 ng mL(-1) in light chain (LC) gene co-transfected cells with an activity measured up to 0.66 +/- 0.15 U mL(-1), also greater than control cells (76 +/- 17 ng mL(-1) and 0.35 +/- 0.09 U mL(-1)). Taken together, these data suggest that DON-mediated GRP78 down-regulation could improve the efficacy of two-chain FVIII gene transfering by facilitating HC secretion, providing an experimental basis for in vivo dual-AAV application in FVIII gene delivery.


Assuntos
Fator VIII/genética , Fator VIII/metabolismo , Proteínas de Choque Térmico/metabolismo , Tricotecenos/farmacologia , Proliferação de Células , Regulação para Baixo , Chaperona BiP do Retículo Endoplasmático , Fator VIII/química , Técnicas de Transferência de Genes , Células HEK293 , Humanos , Transfecção
16.
Sheng Li Xue Bao ; 62(4): 373-81, 2010 Aug 25.
Artigo em Zh | MEDLINE | ID: mdl-20717639

RESUMO

Low levels of coagulation factor VIII (fVIII) protein expression caused by its inefficient secretion and the over-sized fVIII gene affect the transgene-based gene therapy for hemophilia A adversely. Our previous study demonstrated that intein-mediated protein trans-splicing for delivery of the fVIII gene with a dual-vector system could improve secretion of post-translationally spliced fVIII by light chain in cis. In this study, a human/porcine hybrid fVIII (HP-fVIII) containing replaced A1 and A3 domains of porcine fVIII was investigated for secretion and activity of the spliced HP-fVIII after intein-based dual-vector delivery of the HP-fVIII gene. A pair of expression plasmids comprising intein-fused HP-fVIII heavy and light chains were constructed and transiently co-transfected into COS-7 cells. The spliced HP-fVIII and bio-activity in culture media were quantitatively analyzed by ELISA and Coatest method respectively. The intracellular splicing of HP-fVIII was detected by Western blotting. The results showed that in the culture supernatant of cells co-transfected with HP-fVIII, the amount and activity of spliced HP-fVIII were significantly higher than those of spliced hfVIII secreted from the cells co-transfected with human fVIII [(184+/-34 ng/mL) vs (48+/-12) ng/mL, P<0.01; (1.18+/-0.22) IU/mL vs (0.31+/-0.10) IU/mL, P<0.01], demonstrating the dramatically enhancing effect of porcine A1 and A3 domains on the secretion of intein-spliced HP-fVIII. The spliced HP-fVIII protein and its activity were also detected in the supernatant from combined cells separately transfected with intein-fused HP-fVIII heavy and light chain genes, indicating that the intein-mediated HP-fVIII splicing was independent of cellular mechanism and could occur outside the cell after the secretion of precursor proteins. Additionally, an intracellularly spliced HP-fVIII band was found with a molecular weight similar to human fVIII protein, confirming the HP-fVIII splicing. These results provided experimental basis for ongoing study using intein-based dual adeno-associated virus (AAV) vector to transfer HP-fVIII gene in animal models.


Assuntos
Fator VIIIa/biossíntese , Fator VIIIa/genética , Inteínas , Processamento de Proteína , Animais , Células COS , Chlorocebus aethiops , Dependovirus/genética , Dependovirus/metabolismo , Vetores Genéticos , Humanos , Proteínas Recombinantes de Fusão/genética , Suínos , Trans-Splicing
17.
Yao Xue Xue Bao ; 45(11): 1361-6, 2010 Nov.
Artigo em Zh | MEDLINE | ID: mdl-21361035

RESUMO

We recently demonstrated that an intein-mediated protein splicing can be used to transfer B-domain-deleted FVIII (BDD-FVIII) gene by a dual-vector. In this study, we observed the effect of a variant heavy chain with six potential glycosylation sites of B domain and L303E/F309S mutations in its A1 domain, which were proven to be beneficial for FVIII secretion, on secretion of spliced BDD-FVIII. By transient co-transfection of cultured 293 cells with intein-fused variant heavy chain (DMN6HCIntN) and light chain (IntCLC) genes, the culture supernatant was analyzed quantitatively by ELISA for secreted spliced BDD-FVIII antigen and by a chromogenic assay for bioactivity. The data showed that the amount of spliced BDD-FVIII protein and coagulation activity in culture supernatant from DMN6HCIntN plus IntCLC co-transfected cells were up to (149 +/- 23) ng x mL(-1) and (1.12 +/- 0.14) u x mL(-1) respectively greater than that of intein-fused wild type heavy (HCIntN) and light chain (IntCLC) co-transfected cells [(99 +/- 14) ng x mL(-1) and (0.77 +/- 0.13) u x mL(-1)] indicating that the variant heavy chain is able to improve the secretion of spliced BDD-FVIII and activity. A cellular mechanism-independent BDD-FVIII splicing was also observed. It provided evidence for ongoing animal experiment using intein-mediated dual-AAV vector technology for delivery of the BDD-FVIII genes.


Assuntos
Fator VIII , Inteínas , Mutação , Fragmentos de Peptídeos , Processamento de Proteína , Fator VIII/genética , Fator VIII/metabolismo , Glicosilação , Células HEK293 , Humanos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Trans-Splicing , Transfecção
18.
Yao Xue Xue Bao ; 45(1): 60-5, 2010 Jan.
Artigo em Zh | MEDLINE | ID: mdl-21351451

RESUMO

The mutation of cystic fibrosis transmembrane conductance regulator (CFTR) gene leads to an autosomal recessive genetic disorder cystic fibrosis (CF). The gene therapy for CF using adeno-associated virus (AAV) vectors delivering CFTR gene is restricted by the contents limitation of AAV vectors. In this study the split CFTR genes severed at its regulatory domain were delivered by a dual-vector system with an intein-mediated protein trans-splicing as a technique to investigate the post-translational ligation of CFTR half proteins and its function as a chloride ion channel. A pair of eukaryotic expression vectors was constructed by breaking the human CFTR cDNA before Ser712 codon and fusing with Ssp DnaB intein coding sequences. After co-transfection into baby hamster kidney (BHK) cells followed by transient expression, patch clamps were carried out to record the chloride current of whole-cell and the activity of a single channel, and the ligation of two halves of CFTR was observed by Western blotting. The results showed that the intein-fused half genes co-transfected cells displayed a high whole cell chloride current and activity of a single channel indicating the functional recovery of chloride channel, and an intact CFTR protein band was figured out by CFTR-specific antibodies indicating that intein can efficiently ligate the separately expressed half CFTR proteins. The data demonstrated that protein splicing strategy could be used as a strategy in delivering CFTR gene by two vectors, encouraging our ongoing research program on dual AAV vector system based gene transfer in gene therapy for cystic fibrosis.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Inteínas/fisiologia , Processamento de Proteína Pós-Traducional , Trans-Splicing , Animais , Células Cultivadas , Cloretos/metabolismo , Códon/genética , Cricetinae , Fibrose Cística/terapia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , DNA Complementar/genética , Dependovirus/genética , Terapia Genética , Vetores Genéticos , Humanos , Rim/citologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção
19.
Yao Xue Xue Bao ; 45(10): 1232-8, 2010 Oct.
Artigo em Zh | MEDLINE | ID: mdl-21348300

RESUMO

This study is to construct a chimeric human/porcine BDD-FVIII (BDD-hpFVIII) containing the substituted porcine A1 and A3 domains which proved to have a pro-secretory function. By exploring Ssp DnaB intein's protein trans-splicing a dual-vector was adopted to co-transfer the chimeric BDD-hpFVIII gene into cultured COS-7 cell to observe the intracellular BDD-hpFVIII splicing by Western blotting and secretion of spliced chimeric BDD-hp FVIII protein and bio-activity using ELISA and Coatest assay, respectively. The dada showed that an obvious protein band of spliced BDD-hpFVIII can be seen, and the amount of spliced BDD-hpFVIII protein and bio-activity in the supernatant were up to (340 +/- 64) ng x mL(-1) and (2.52 +/- 0.32) u x mL(-1) secreted by co-transfected cells which were significantly higher than that of dual-vector-mediated human BDD-FVIII gene co-transfection cells [(93 +/- 22) ng x mL(-1), (0.72 +/- 0.13) u x mL(-1)]. Furthermore, a spliced BDD-hpFVIII protein and activity can be detected in supernatant from combined cells separately transfected with intein-fused BDD-hpFVIII heavy and light chain genes indicating that intein-mediated BDD-hpFVIII splicing occurs independently of cellular mechanism. It provided evidence for enhancing FVIII secretion in the research of animal models using intein-based dual vector for the delivery of the BDD-hpFVIII gene.


Assuntos
Fator VIII , Inteínas , Fragmentos de Peptídeos , Processamento de Proteína , Animais , Células COS , Chlorocebus aethiops , Fator VIII/genética , Fator VIII/metabolismo , Vetores Genéticos , Humanos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Plasmídeos , Suínos , Trans-Splicing , Transfecção
20.
Yao Xue Xue Bao ; 45(5): 595-600, 2010 May.
Artigo em Zh | MEDLINE | ID: mdl-20931761

RESUMO

As synthesized by vascular endothelial cells and megakaryocytes, the von Willebrand factor (vWF) plays an important hemostatic role in the binding to and stabilizing blood coagulation factor VIII (FVIII) and preventing its enzymatic degradation. Our recent work demonstrated intein can efficiently ligate BDD-FVIII (B-domaim deleted FVIII) posttranslationally by protein trans-splicing after transfer of split BDD-FVIII gene by a dual-vector system. In this study we investigated the effect of vWF on secretion and activity of intein-ligated BDD-FVIII. We observed the levels of full-length BDD-FVIII antigen secreted into culture supernatant by ELISA and their activity by Coatest assay after transfection of cultured 293 cells with intein-fused BDD-FVIII heavy- and light-chain genes simultaneously with the vWF gene co-transfected. The data showed that the amount of full-length BDD-FVIII protein and their bioactivity in vWF gene co-transfected cell supernatant were 235 +/- 21 ng x mL(-1) and 1.98 +/- 0.2 u x mL(-1), respectively, greater than that of non-vWF co-transfected cell (110 +/- 18) ng x mL(-1) and 1.10 +/- 0.15 u x nL(-1)) or just BDD-FVIII gene transfected control cell (131 +/- 25 ng x mL(-1) and 1.22 +/- 0.18 u x mL(-1)) indicating the benefit of vWF gene co-transfection in the secretion and activity of intein-spliced BDD-FVIII protein. It provided evidence that vWF gene co-transfer may be useful to improve efficacy of gene therapy for hemophilia A in protein splicing-based split FVIII gene transfer.


Assuntos
Fator VIII , Inteínas , Fragmentos de Peptídeos , Processamento de Proteína , Fator de von Willebrand , Fator VIII/genética , Fator VIII/metabolismo , Terapia Genética , Vetores Genéticos , Células HEK293 , Hemofilia A/terapia , Humanos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Plasmídeos , Trans-Splicing , Transfecção , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo , Fator de von Willebrand/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA