Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Phys Chem Chem Phys ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982932

RESUMO

The supramolecular assembly of simple colloids into complex, hierarchical structures arises from a delicate interplay of short-range directional and isotropic long-range forces. These assemblies are highly sensitive to environmental changes, such as temperature variations and the presence of specific molecules, making them promising candidates for nanomachine design. In this study, we investigate the effect of hydrostatic pressure, up to 1800 bar, on the supramolecular assemblies of cyclodextrin/surfactant complexes. Using small-angle neutron scattering, we demonstrate that while the overall structure of the supramolecular aggregates remains largely stable under pressure, the stiffness of the planar lattice formed by the inclusion complexes, the basic structural unit of the supramolecular assemblies, shows a fourfold increase between 250 and 1000 bar. These findings suggest that high-pressure studies can be exploited to better understand the mechanisms of supramolecular assembly processes, thereby aiding in the design of more robust and functional systems.

2.
Soft Matter ; 19(8): 1523-1530, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36727568

RESUMO

This study investigates the temperature responsive behavior of inclusion complexes formed by weakly anionic alkyl ethoxy carboxylates and α (αCD) and ß-cyclodextrins (ßCD). Small-angle neutron scattering (SANS) was performed to probe the structural behaviour at the 1-100 nanometer scale of the hierarchical assemblies at different temperatures. The phase transitions and thermodynamics were systematically monitored as a function of the degree of ionization of the surfactant by differential scanning calorimetry (DSC). Herein, we investigate the effect of the surfactant degree of ionization on the thermoresponsive properties of the inclusion complex supramolecular assemblies. Inclusion complexes formed with the ionized surfactant spontaneously assemble into multilayered structures, which soften with increasing temperature. We also found that the presence of charges is not only required to impart order to the supramolecular assemblies, but also induced in-plane crystallization of the inclusion complexes. Finally, the use of a weakly anionic surfactant allows us to probe the interplay between the charge density and temperature on the assembly of surfactant-cyclodextrin inclusion complexes. This study helps to improve the design of multi-responsive supramolecular systems based on cyclodextrins.

3.
Soft Matter ; 19(8): 1606-1616, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36752562

RESUMO

Chitosan-coated surfaces are of great interest for biomedical applications (antibacterial coatings, implants, would healing, single-cell microfluidics…). However, one major limitation of chitosan-based systems is the high solubility of the polymer under acidic aqueous conditions. Herein, we describe a simple procedure to prepare extremely smooth and stable chitosan coatings. In detail, chitosan films with a low degree of N-acetylation and of thicknesses varying from 40 nm to 10 µm were grafted onto epoxy-functionalized silicon wafers via an optimized water-temperature treatment (WTT). The formation of a grafted chitosan network insoluble in acidic aqueous media (pH 3.5) was evidenced and the films were stable for at least 2 days at pH 3.5. The film morphology and the swelling behavior were characterized by atomic force microscopy (AFM) and neutron reflectivity, which showed that the film roughness was extremely low. The physical cross-linking of the films was demonstrated using infrared spectroscopy, dynamic mechanical analysis (DMA) and wide-angle X-ray scattering (WAXS). Finally, we show that the swelling behavior of such films was largely influenced by the environmental conditions, such as the pH or ionic strength of the solution.

4.
Soft Matter ; 18(46): 8733-8747, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36341841

RESUMO

Liquid foams are multi-scale structures whose structural characterization requires the combination of very different techniques. This inherently complex task is made more difficult by the fact that foams are also intrinsically unstable systems and that their properties are highly dependent on the production protocol and sample container. To tackle these issues, a new device has been developed that enables the simultaneous time-resolved investigation of foams by small-angle neutron scattering (SANS), electrical conductivity, and bubbles imaging. This device allows the characterization of the foam and its aging from nanometer up to centimeter scale in a single experiment. A specific SANS model was developed to quantitatively adjust the scattering intensity from the dry foam. Structural features such as the liquid fraction, specific surface area of the Plateau borders and inter-bubble films, and thin film thickness were deduced from this analysis, and some of these values were compared with values extracted from the other applied techniques. This approach has been applied to a surfactant-stabilized liquid foam under free drainage and the underlying foam destabilization mechanisms were discussed with unprecedented detail. For example, the information extracted from the image analysis and SANS data allows for the first time to determine the disjoining pressure vs. thickness isotherm in a real, draining foam.

5.
Soft Matter ; 18(35): 6529-6537, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35894255

RESUMO

In this work, the inclusion complexes of alkyl ethoxy carboxylates with α-cyclodextrin (αCD) and ß-cyclodextrin (ßCD) were investigated. The thermodynamics of the complexation process was probed by isothermal titration calorimetry (ITC) and volumetry as a function of the degree of ionization of the surfactant. The complexation process was shown to be an enthalpically driven pH-independent process. For both types of cyclodextrins, the complexes were found to spontaneously self-assemble into highly-ordered supramolecular aggregates probed by small-angle neutron scattering and electron and optical microscopy. Herein, we report the formation of thin platelets for nonionized surfactant systems and equally spaced multilayered hollow cylinders for ionized systems in a hierarchical self-assembly process. In addition, the analysis allowed unveiling the effect of the number of ethylene oxides in the surfactants and the CD cavity size on the morphology of the aggregates. Finally, this study also highlights the importance of examining the tuning parameters' influence on the short and long-range interactions involved in the control of the assembly process.

6.
Langmuir ; 37(32): 9858-9864, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34369144

RESUMO

This study evidences the adsorption of model nonionic polymers onto aluminogermanate imogolite nanotubes, attractive porous nanofillers with potential molecular loading and release applications. We resolve the underlying mechanisms between nanotubes and polyethylene glycols with different molecular weights by means of nanoisothermal titration calorimetry. The analysis of the results provides a direct thermodynamic characterization, allowing us to propose a detailed description of the energetics involved in the formation of polymer/imogolite complexes. The affinity toward the nanotube surface is enthalpy-driven and strongly depends on the polymer chain length, which significantly affects the polymer configuration and the flow properties of the resulting complexes, probed by small-angle neutron scattering and rheology, respectively. These findings open new avenues for the rational design of these hybrid mixtures for advanced applications.

7.
Langmuir ; 36(37): 10941-10951, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32852955

RESUMO

In the last few years, hybrid lipid-copolymer assemblies have attracted increasing attention as possible two-dimensional (2D) membrane platforms, combining the biorelevance of the lipid building blocks with the stability and chemical tunability of copolymers. The relevance of these systems varies from fundamental studies on biological membrane-related phenomena to the construction of 2D complex devices for material science and biosensor technology. Both the fundamental understanding and the application of hybrid lipid-copolymer-supported bilayers require thorough physicochemical comprehension and structural control. Herein, we report a comprehensive physicochemical and structural characterization of hybrid monolayers at the air/water interface and of solid-supported hybrid membranes constituted by 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and the block copolymer poly(butadiene-b-ethyleneoxide) (PBD-b-PEO). Hybrid lipid-copolymer supported bilayers (HSLBs) with variable copolymer contents were prepared through spontaneous rupture and fusion of hybrid vesicles onto a hydrophilic substrate. The properties of the thin films and the parent vesicles were probed through dynamic light scattering (DLS), differential scanning calorimetry (DSC), optical ellipsometry, quartz crystal microbalance with dissipation monitoring (QCM-D), and confocal scanning laser microscopy (CSLM). Stable, hybrid lipid/copolymer systems were obtained for a copolymer content of 10-65 mol %. In particular, DSC and CSLM show lateral phase separation in these hybrid systems. These results improve our fundamental understanding of HSLBs, which is necessary for future applications of hybrid systems as biomimetic membranes or as drug delivery systems, with additional properties with respect to phospholipid liposomes.

8.
Soft Matter ; 16(30): 7137-7143, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32662480

RESUMO

In this contribution, we investigate the effect of the type of counterion on the properties of dilute solutions of polyoxyethylene alkyl ether carboxylic acids. Two different surfactants, presenting an oleic acid alkyl chain and on-average five and nine ethylene oxide units, and terminated by a weakly anionic carboxymethyl group were studied. The surfactants were gradually ionized with sodium hydroxide, arginine, and choline hydroxide. The solutions properties were probed by light scattering, electrophoretic mobility, density and sound velocity measurements, as well as by small-angle neutron scattering. To our initial surprise, no specific effect arising from the nature of the counterion could be determined. We ascribe this phenomenon to the fact that the presence of the ethylene oxide units markedly dilutes the surfactant head group charge density, reducing counterion condensation and subsequent counterion specific effects.

9.
Phys Chem Chem Phys ; 22(15): 8193-8202, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32249883

RESUMO

The structural properties of halloysite/biopolymer aqueous mixtures were firstly investigated by means of combining different techniques, including small-angle neutron scattering (SANS), electric birefringence (EBR) and fluorescence correlation spectroscopy (FCS). Among the biopolymers, non-ionic hydroxypropylcellulose and polyelectrolytes (anionic alginate and cationic chitosan) were selected. On this basis, the specific supramolecular interactions were correlated to the structural behavior of the halloysite/biopolymer mixtures. SANS data were analyzed in order to investigate the influence of the biopolymer adsorption on the halloysite gyration radius. In addition, a morphological description of the biopolymer-coated halloysite nanotubes (HNTs) was obtained by the simulation of SANS curves. EBR experiments evidenced that the orientation dynamics of the nanotubes in the electric field is influenced by the specific interactions with the polymers. Namely, both variations of the polymer charge and/or wrapping mechanisms strongly affected the HNT alignment process and, consequently, the rotational mobility of the nanotubes. FCS measurements with fluorescently labeled biopolymers allowed us to study the aqueous dynamic behavior of ionic biopolymers after their adsorption onto the HNT surfaces. The combination of EBR and FCS results revealed that the adsorption process reduces the mobility in water of both components. These effects are strongly enhanced by HNT/polyelectrolyte electrostatic interactions and wrapping processes occurring in the halloysite/chitosan mixture. The attained findings can be useful for designing halloysite/polymer hybrids with controlled structural properties.

10.
Soft Matter ; 15(42): 8611-8620, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31621749

RESUMO

The degree of ionisation of a weakly acidic surfactant can be continuously modified from nonionic to ionic by adjusting the pH. This property can be used to control the curvature and therefore the morphology of the self-assembled aggregates it forms in solution. Herein, we report the surprising phenomenon, observed in the alkyl ether oligo(ethylene oxide) carboxylate (CH3(CH2)11/13OEO4.5CH2COOH), whereby it is not only the pH but also the neutralisation rate that affects the aggregate morphology. Specifically, when the pH is increased slowly, up to 40 wt% of the surfactant remains in a long-lived vesicle state at high pH. This phenomenon was characterised in detail by small-angle neutron scattering and light scattering techniques. The cause of this phenomenon is thought to be related to a combination of polydispersity and the formation of acid-carboxylate dimers close to the pKa. The transition of these vesicles to the thermodynamically favoured micelles at high pH is inhibited by a high activation energy barrier and therefore only occurs very slowly. Increasing the NaCl concentration eliminates the presence of vesicles at high pH, demonstrating that the activation energy for the vesicle-to-micelle transition depends strongly on electrostatic interactions. These experiments show that the preparation pathway can be used to obtain different self-assembled structures at identical conditions via kinetic control. This phenomenon provides a useful tool for devising formulations where the properties of the system can be altered without changing the composition.

11.
Photosynth Res ; 135(1-3): 125-139, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28236074

RESUMO

Photoprotection in cyanobacteria relies on the interplay between the orange carotenoid protein (OCP) and the fluorescence recovery protein (FRP) in a process termed non-photochemical quenching, NPQ. Illumination with blue-green light converts OCP from the basic orange state (OCPO) into the red-shifted, active state (OCPR) that quenches phycobilisome (PBs) fluorescence to avoid excessive energy flow to the photosynthetic reaction centers. Upon binding of FRP, OCPR is converted to OCPO and dissociates from PBs; however, the mode and site of OCPR/FRP interactions remain elusive. Recently, we have introduced the purple OCPW288A mutant as a competent model for the signaling state OCPR (Sluchanko et al., Biochim Biophys Acta 1858:1-11, 2017). Here, we have utilized fluorescence labeling of OCP at its native cysteine residues to generate fluorescent OCP proteins for fluorescence correlation spectroscopy (FCS). Our results show that OCPW288A has a 1.6(±0.4)-fold larger hydrodynamic radius than OCPO, supporting the hypothesis of domain separation upon OCP photoactivation. Whereas the addition of FRP did not change the diffusion behavior of OCPO, a substantial compaction of the OCPW288A mutant and of the OCP apoprotein was observed. These results show that sufficiently stable complexes between FRP and OCPW288A or the OCP apoprotein are formed to be detected by FCS. 1:1 complex formation with a micromolar apparent dissociation constant between OCP apoprotein and FRP was confirmed by size-exclusion chromatography. Beyond the established OCP/FRP interaction underlying NPQ cessation, the OCP apoprotein/FRP interaction suggests a more general role of FRP as a scaffold protein for OCP maturation.


Assuntos
Apoproteínas/metabolismo , Proteínas de Bactérias/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Apoproteínas/química , Proteínas de Bactérias/química , Varredura Diferencial de Calorimetria , Cromatografia em Gel , Cisteína/metabolismo , Difusão , Hidrodinâmica , Espectrometria de Massas , Reprodutibilidade dos Testes , Espectrometria de Fluorescência , Coloração e Rotulagem , Compostos de Sulfidrila/metabolismo
12.
Photosynth Res ; 135(1-3): 141-142, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28929465

RESUMO

In Fig. 1a in the original article, the amino acid side chains were incorrectly labeled in the structure representation of the orange carotenoid protein (OCP). The corrected figure is printed in this erratum.

13.
Chemistry ; 24(15): 3854-3861, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29314310

RESUMO

The chemistry of aqueous salt solutions is rich with ambiguities, especially in stimuli-responsive supramolecular systems. Rational use of ion specificity to design supramolecular responsive materials, however, remains a challenging task. In this work, a low-molecular-weight supramolecular system was developed that was used to reveal the underlying systematic relationship between ions, water, and solutes. By utilizing these water-attenuated supramolecular forces (with Ka only ca. 30 m-1 ), an alternative concept for fabricating an aqueous responsive system in ionic medium was demonstrated. This work not only provides mechanistic insight into the underdeveloped role of topology in ion specificity upon noncharged polar surfaces, but also demonstrates the feasibility of utilizing weak supramolecular approaches to control the thermoresponsiveness.

14.
Soft Matter ; 13(29): 4988-4996, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28676872

RESUMO

The formation of water insoluble polyelectrolyte/surfactant complexes (PESCs) upon mixing two homogeneous polycation/anionic surfactant and polycation/nonionic surfactant solutions is reported here. This phase separation is unexpected and differs markedly from the commonly observed enhanced solubility of colloidal systems in mixed surfactant systems. The study was performed on mixtures of the cationic biopolysaccharide chitosan (poly d-glucosamine) and mixed micelles composed of an ethoxylated fatty alcohol and its carboxylic acid terminated equivalent. The thermodynamics of mixing was probed via isothermal titration calorimetry (ITC), while the structural characterisation was conducted by means of light and neutron scattering (SANS). The results show that the substitution of a weakly anionic surfactant with its nonionic equivalent has profound effects on the interactions at very different length scales. The dilution of the ionic headgroups allows for a more efficient interaction between micelles and polymer chains, and results in an elongation of the mixed micelles which reduces the bending cost of the semi-rigid chitosan and introduces an additional attractive potential of entropic origin. In this work, as a result of a comprehensive thermodynamic and structural analysis, we demonstrate how the subtle interplay of different forces leads to such an unexpected behaviour, where the addition of a nonionic surfactant causes the phase separation of electrostatic complexes.

15.
Langmuir ; 30(35): 10608-16, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25115198

RESUMO

In this work, self-assembly of alkyl ethylene oxide carboxylates and the biopolymer chitosan into supramolecular structures with various shapes is presented. Our investigations were done at pH 4.0, where the chitosan is almost fully charged and the surfactants are partially deprotonated. By changing the alkyl chain length and the number of ethylenoxide units very different water-soluble complexes can be obtained, ranging from globular micelles incorporated in a chitosan network to formation of ordered multiwalled vesicles. The structural characteristics of these complexes can be finely controlled by the mixing ratio of chitosan and surfactant, i.e., simply by the solutions composition. For instance, the vesicle wall thickness can be varied between 5 and 50 nm just by varying the mixing ratio. Accordingly, we expect this system to be an outstanding carrier for hydrophilic compounds with tunable release time option. Moreover, an easy route for preparation of chitosan-based complexes in the solid state with controlled mesoscopic order is presented. This work opens the way to prepare biofriendly materials on the basis of chitosan and mild anionic surfactants which are rather versatile with respect to their structure and properties, allowing for preparation of complexes with highly variable structures in both aqueous and solid phase. Formation of such different structures can be exploited for preparation of carriers, which are able to transport hydrophilic as well as hydrophobic molecules. Furthermore, as chitosan is well known to exhibit antibacterial and anti-inflammatory properties, different applications of these complexes can be indicated, i.e., as drug delivery systems or as coatings for medical implants.


Assuntos
Biopolímeros/química , Quitosana/química
16.
Langmuir ; 30(7): 1778-87, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24490632

RESUMO

In this work, we present a comprehensive structural characterization of long-term stable complexes formed by biopolycation chitosan and oppositely charged nonaoxyethylene oleylether carboxylate. These two components are attractive for many potential applications, with chitosan being a bioderived polymer and the surfactant being ecologically benign and mild. Experiments were performed at different mixing ratios Z (ratio of the nominal charges of surfactant/polyelectrolyte) and different pH values such that the degree of ionization of the surfactant is largely changed whereas that of chitosan is only slightly affected. The structural characterization was performed by combining static and dynamic light scattering (SLS and DLS) and small-angle neutron scattering (SANS) to cover a large structural range. Highly complex behavior is observed, with three generic structures formed that depend on pH and the mixing ratio, namely, (i) a micelle-decorated network at low Z and pH, (ii) rodlike complexes with the presence of aligned micelles at medium Z and pH, and (iii) compacted micellar aggregates forming a supraaggregate surrounded by a chitosan shell at high Z and pH. Accordingly, the state of aggregation in these mixtures can be tuned structurally over quite a range only by rather small changes in pH.


Assuntos
Acetatos/química , Quitosana/química , Álcoois Graxos/química , Polietilenoglicóis/química , Modelos Moleculares , Estrutura Molecular
17.
Biomacromolecules ; 15(11): 3881-90, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25144348

RESUMO

Although several strategies are now available to enzymatically cross-link linear polymers to hydrogels for biomedical use, little progress has been reported on the use of dendritic polymers for the same purpose. Herein, we demonstrate that horseradish peroxidase (HRP) successfully catalyzes the oxidative cross-linking of a hyperbranched polyglycerol (hPG) functionalized with phenol groups to hydrogels. The tunable cross-linking results in adjustable hydrogel properties. Because the obtained materials are cytocompatible, they have great potential for encapsulating living cells for regenerative therapy. The gel formation can be triggered by glucose and controlled well under various environmental conditions.


Assuntos
Reagentes de Ligações Cruzadas/química , Glicerol/química , Hidrogéis/química , Polímeros/química , Alicerces Teciduais/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Reagentes de Ligações Cruzadas/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Glicerol/farmacologia , Hidrogéis/farmacologia , Camundongos , Polímeros/farmacologia
18.
Int J Biol Macromol ; 245: 125565, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37379951

RESUMO

Surface treatment by adhesive polymers is a promising solution to immobilize and study bacteria cells through microscopic assays and, for example, control their growth or determine their susceptibility to antibiotic treatment. The stability of such functional films in wet conditions is crucial, as the film degradation would compromise a persistent use of the coated devices. In this work, low roughness chitosan thin films of degrees of acetylation (DA) ranging from 0.5 % to 49 % were chemically grafted onto silicon and glass substrates and we have demonstrated how the physicochemical properties of the surfaces and the bacterial response were DA-dependent. A fully deacetylated chitosan film presented an anhydrous crystalline structure while the hydrated crystalline allomorph was the preferred structure at higher DA. Moreover, their hydrophilicity increased at higher DA, leading to higher film swelling. Low DA chitosan-grafted substrate favored bacterial growth away from the surface and could be envisioned as bacteriostatic surfaces. Contrarily, an optimum of Escherichia coli adhesion was found for substrates modified with chitosan of DA = 35 %: these surfaces are adapted for the study of bacterial growth and antibiotic testing, with the possibility of reusing the substrates without affecting the grafted film - ideal for limiting single-use devices.


Assuntos
Quitosana , Quitosana/química , Acetilação , Antibacterianos/farmacologia , Antibacterianos/química , Polímeros/química
19.
Langmuir ; 28(51): 17609-16, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23171124

RESUMO

A novel thermodynamic approach for the description of differential scanning calorimetry (DSC) experiments on self-aggregating systems is derived and presented. The method is based on a mass action model where temperature dependence of aggregation numbers is considered. The validity of the model was confirmed by describing the aggregation behavior of poly(ethylene oxide)-poly(propylene oxide) block copolymers, which are well-known to exhibit a strong temperature dependence. The quantitative description of the thermograms could be performed without any discrepancy between calorimetric and van 't Hoff enthalpies, and moreover, the aggregation numbers obtained from the best fit of the DSC experiments are in good agreement with those obtained by light scattering experiments corroborating the assumptions done in the derivation of the new model.

20.
Langmuir ; 28(29): 10640-52, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22720716

RESUMO

Microemulsions are important formulations in cosmetics and pharmaceutics and one peculiarity lies in the so-called "phase inversion" that takes place at a given water-to-oil concentration ratio and where the average curvature of the surfactant film is zero. In that context, we investigated the structural transitions occurring in Brij 96-based microemulsions with the cosmetic oil ethyl oleate and studied the influence of the short chain alcohol butanol on their structure and properties as a function of water addition. The characterization has been carried out by means of transport properties, spectroscopy, DLS, SANS, and electrochemical methods. The results confirm that the nonionic Brij 96 in combination with butanol as cosurfactant forms a U-type microemulsion that upon addition of water undergoes a continuous transition from swollen reverse micelles to oil-in-water (O/W) microemulsion via a bicontinuous region. After determining the structural transition through viscosity and surface tension, the 2D-ROESY studies give an insight into the microstructure, i.e., the oil component ethyl oleate mainly is located at the hydrophobic tails of surfactant while butanol molecules reside preferentially in the interface. SANS experiments show a continuous increase of the size of the structural units with increasing water content. The DLS results are more complex and show the presence of two relaxation modes in these microemulsions for low water content and a single diffusive mode only for the O/W microemulsion droplets. The fast relaxation reflects the size of the structural units while the slower one is attributed to the formation of a network of percolated microemulsion aggregates. Electrochemical studies using ferrocene have been carried out and successfully elucidated the structural transformations with the help of diffusion coefficients. An unusual behavior of ferrocene has been observed in the present microheterogeneous medium, giving a deeper insight into ferrocene electrochemistry. NMR-ROESY experiments give information regarding the internal organization of the microemulsion droplets. In general, one finds a continuous structural transition from a W/O over a bicontinuous to an O/W microemulsion, however with a peculiar network formation over an extended concentration range, which is attributed to the somewhat amphiphilic oil ethyl oleate. The detailed knowledge of the structural behavior of this type of system might be important for their future applications.


Assuntos
Técnicas Eletroquímicas , Ácidos Oleicos/química , Emulsões , Luz , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Óleos de Plantas/química , Polietilenoglicóis/química , Espalhamento de Radiação , Tensoativos/química , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA