Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Molecules ; 26(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299523

RESUMO

One of the major problems in book conservation is the long-term deconstructive effect of acidity introduced into the paper by several additives, which, in the presence of humidity, generates a hydrogen cation with a strong catalytic role in cellulose depolymerization. Many types of treatment have been used in the past, but up to now, research for less-invasive, fast and cheap methods is still vividly ongoing. In this study, an approach to book deacidification is presented, where alkaline water solutions are administered to bound books in the form of micrometer-sized aerosol droplets, without using vacuum apparatus accessories. Alkaline clouds treatments were alternated with gentle air fluxes of drying steps. Few cycles are required to achieve uniform deacidification of books. The treatment could be conducted with proper apparatus on large volumes, resulting in rapid treatment time and low cost. The titration curve reporting the variation of book pH, with respect to the amount of absorbed alkaline aerosol, was built and interpreted in terms of a chemical model for the neutralization process. FTIR, PXRD and XRF spectroscopies were used to characterize the book chemistry. The effects of the treatment on the book were evaluated by measuring the degree of polymerization (DP) of the paper and the colorimetric coordinates of the paper and ink. Artificial aging tests revealed a general increase in the aging stability of the deacidified paper samples with respect to the untreated samples. Finally, the alkaline reserve data are discussed.

2.
Photochem Photobiol Sci ; 18(9): 2248-2258, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31044191

RESUMO

Fabrics obtained from cellulose spinning, extracted from Spanish broom, were coated with TiO2 film, through the low pressure plasma sputtering technique, in order to get antibacterial activity. The obtained fabrics were used for the photocatalytic degradation of Escherichia coli, by irradiation with UV-light emitting diodes (UV-LED), in a batch photocatalytic reactor. Before and after functionalization treatments, cellulosic substrates were chemically characterized by X-ray photoelectron spectroscopy (XPS) analyses. Water Contact Angle (WCA) measurements allowed obtaining information about the hydrophilicity of the materials, while their antibacterial efficiency was determined at several initial concentrations (from 103 up to 108 CFU mL-1) of bacteria in distilled water, bottled water and synthetic wastewater. It was found that photocatalytic reactions were capable of achieving up to 100% bacterial inactivation in 1 h of treatment, following a pseudo-first order kinetic model. No bacterial regrowth was observed after photocatalytic treatments in almost all experimental conditions. In contrast, during photolytic treatment (i.e. in the absence of the TiO2 coated fabrics) bacteria recovered their initial concentration after 3 h in the dark. Finally, the reusability of the plasma modified fibers to inactivate bacteria was studied.


Assuntos
Antibacterianos/farmacologia , Celulose/farmacologia , Escherichia coli/efeitos dos fármacos , Processos Fotoquímicos , Gases em Plasma/química , Titânio/farmacologia , Água/metabolismo , Antibacterianos/química , Catálise , Celulose/química , Escherichia coli/metabolismo , Pressão , Titânio/química , Microbiologia da Água
3.
Chemistry ; 22(29): 10179-86, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27334359

RESUMO

Thienosquaraines are an interesting class of electroactive dyes that are useful for applications in organic electronics. Herein, the redox chemistry and electrochromic response of a few newly synthesized thienosquaraines are presented. These properties are compared to those of the commercial 2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl]squaraine. The stability of the radical ions formed in electrochemical processes strongly affects these properties, as shown by cyclic voltammetry, in situ spectroelectrochemistry, and quantum chemical calculations. Furthermore, all of the dyes show aggregation tendency resulting in panchromatic absorption covering the whole UV/Vis spectral range.

4.
Soft Matter ; 10(30): 5559-67, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24959858

RESUMO

The nonthermal biological effects of millimeter waves have been mainly attributed to the interaction with biological membranes. Several data on biomimetic membrane systems seem to support this conclusion. In this paper a mechanistic hypothesis is evaluated to explain such an interaction taking into account experimental NMR data on deuterium-labeled phospholipid vesicles. These data showed that millimeter waves induce a time and a hydration-dependent reduction of the water ordering around the phosphocholine headgroups. This effect is here interpreted as a change in membrane water partitioning, due to the coupling of the radiation with the fast rotational dynamics of bound water molecules, that results in a measurable relocation of water molecules from the inner to the outer binding regions of the membrane interface. When millimeter wave exposure is performed in the vicinity of the transition point, this effect can lead to an upward shift of the membrane phase transition temperature from the fluid to the gel phase. At a macroscopic level, this unique sensitivity may be explained by the universal dynamic behaviour of the membranes in the vicinity of the transition point, where a pretransitional increase of membrane area fluctuations, i.e., of the mean area per phospholipid headgroup, is observed. Exposure to millimeter waves increases the above fluctuations and enhances the second order character of the transition.


Assuntos
Dimiristoilfosfatidilcolina/química , Modelos Teóricos , Deutério , Espectroscopia de Ressonância Magnética , Membranas Artificiais
5.
J Biol Phys ; 39(3): 395-410, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23860916

RESUMO

Exposure of cell membranes to an electromagnetic field (EMF) in the millimeter wave band (30-300 GHz) can produce a variety of responses. Further, many of the vibrational modes in complex biomolecules fall in the 1-100 GHz range. In addition to fundamental scientific interest, this may have applications in the development of diagnostic and therapeutic medical applications. In the present work, lipid vesicles of different size were used to study the effects of exposure to radiation at 52-72 GHz, with incident power densities (IPD) of 0.0035-0.010 mW/cm(2), on the chemical-physical properties of cell membranes. Large unilamellar vesicles (LUVs) were used to study the effect of the radiation on the physical stability of vesicles by dynamic light scattering. An inhibition of the aging processes (Ostwald ripening), which usually occur in these vesicles because of their thermodynamic instability, resulted. Giant unilamellar vesicles (GUVs) were used to study the effect of the radiation on membrane water permeability under osmotic stress by phase contrast microscopy. In this case, a decrease in the water membrane permeability of the irradiated samples was observed. We advance the hypothesis that both the above effects may be explained in terms of a change of the polarization states of water induced by the radiation, which causes a partial dehydration of the membrane and consequently a greater packing density (increased membrane rigidity).


Assuntos
Campos Eletromagnéticos , Lipossomas Unilamelares/química , Lipossomas Unilamelares/efeitos da radiação , Membrana Celular/efeitos da radiação , Pressão Osmótica/efeitos da radiação , Temperatura
6.
Environ Toxicol Chem ; 42(2): 421-436, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36420672

RESUMO

The present study investigated if new biocomposite materials, polyurethanes (PURs) added with functionalized cellulose fibers, produce potential toxic effects on two target organisms currently used in biomonitoring the quality of two different environmental compartments. Natural fibers were extracted from the species Spartium junceum L., a shrub commonly found in the southern region of the Mediterranean having a high cellulose content. All PURs produced were characterized by Fourier-transform infrared spectroscopy, and their structure was analyzed by scanning electron microscopy. We measured the effects of exposure to aromatic and aliphatic PUR composites (containing or not cellulose fibers) on the aquatic model organism Daphnia magna Straus, a freshwater crustacean (Cladocera), and a biomonitor of air quality, the fruticose epiphytic lichen Pseudevernia furfuracea (L.) Zopf. Leachates from aliphatic PUR composite not containing cellulose are more toxic to D. magna than all others, showing a slight acute toxicity in the case of the shortest exposure (24 h) and a moderate acute toxicity in the longer one (48 h). This effect is most likely due to the presence of free organic ammines and amides, which, in their turn, are immobilized in composites containing cellulosic fibers because of the considerable amount of chemical functional groups. Regarding lichens, both types of aliphatic PURs resulted in a toxic effect. Formulate not added with cellulose strongly promoted fungal peroxidation, whereas that which was functionalized affected the pigment concentration of the algal partner. Our results suggest that the use of cellulose in PUR production, in general, can limit the ecotoxicological effects on both test organisms and reduce the potential environmental impact due to this type of polymer. Environ Toxicol Chem 2023;42:421-436. © 2022 SETAC.


Assuntos
Poliuretanos , Poluentes Químicos da Água , Animais , Poliuretanos/toxicidade , Poliuretanos/química , Daphnia , Organismos Aquáticos , Água Doce , Poluentes Químicos da Água/análise
7.
Plants (Basel) ; 12(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375861

RESUMO

Information regarding the physiological and molecular plant responses to the treatment with new biofertilizers is limited. In this study, a fast-composting soil amendment obtained from solid waste by means of a Fenton reaction was assessed to evaluate the effects on the growth of Lactuca sativa L. var. longifolia seedlings. Growth rate, root biomass, chlorophyll concentration, and total soluble proteins of seedlings treated with the 2% fast-composting soil amendment showed significant increases in comparison with the control seedlings. Proteomic analysis revealed that the soil amendment induced the up-regulation of proteins belonging to photosynthesis machinery, carbohydrate metabolism, and promoted energy metabolism. Root proteomics indicated that the fast-composting soil amendment strongly induced the organs morphogenesis and development; root cap development, lateral root formation, and post-embryonic root morphogenesis were the main biological processes enriched by the treatment. Overall, our data suggest that the addition of the fast-composting soil amendment formulation to the base soils might ameliorate plant growth by inducing carbohydrate primary metabolism and the differentiation of a robust root system.

8.
Sci Rep ; 11(1): 35, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420106

RESUMO

Long cellulose fiber (10-30 cm), extracted from Spartium junceum, was chemically treated with different softening agents with the aim to improve its textile applicability. A preliminary sensory evaluation of the treated fibers revealed an evident, though qualitative, improvement of the fiber softness. The effects of the softening agents on the fiber was evaluated quantitatively, by means of macroscopic measurements of the wettability, viscoelasticity, and thermal (thermal gravimetry) properties. Moreover, the effects of the softening treatments on the microscopic structure of the fiber and on its properties at a molecular level, were studied by optical and scanning electron microscope and X-ray diffraction (XRD), respectively. The macroscopic analysis showed that the softeners used increases the hydrophilicity and water wettability of the cellulose fiber with respect to the raw one. Moreover, the dynamical mechanical analysis on sample yarns showed that the softeners increase the interfiber frictional forces. A linear correlation between the interfiber friction and the increase of hydrophilicity and fiber wettability was shown. The treated fiber exhibits a more homogeneous thermal behaviour, due to more homogeneous structural features, since the thermal-induced cellulose fibrils depolimerization undergoes a marked temperature range contraction. These data can be well related with those obtained by microscopy analysis, showing that the fiber surface, after the treatment, appears thinner and less rough, as well as with the XRD analysis, which shows that softeners induce a significant decrease of the fiber crystallinity.

9.
J Nephrol ; 23 Suppl 16: S213-20, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21170883

RESUMO

High resolution proton magnetic resonance spectroscopy (1H-NMR) of body fluids coupled with multivariate data analysis has led to a new science known as metabonomics. Metabonomics is a powerful tool for investigating any disturbance in the normal homeostasis of biochemical processes. In particular, urine metabonomics provides information on the metabolite phenotype of the human being and is therefore appropriate to study the status of the global system. Here we applied 1H-NMR-based urinary metabonomics in a perspective study of the inherited lysosomal storage disorder known as Fabry disease, starting from the metabolite profiling of urine samples of male and female naïve Fabry subjects. Here we show that the 2 groups of patients can be fairly clearly separated into 2 classes due to statistically significant differences in the urinary level of some metabolites. This preliminary study shows that metabonomics can potentially be used for characterizing the biochemical mechanisms underlying the disease and, hopefully, for early diagnosis of Fabry disease.


Assuntos
Doença de Fabry/urina , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Terapia de Reposição de Enzimas , Doença de Fabry/terapia , Feminino , Humanos , Análise dos Mínimos Quadrados , Masculino , Análise de Componente Principal
10.
RSC Adv ; 10(57): 34738-34751, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35514415

RESUMO

The simultaneous transformation of crystalline or amorphous cellulose into a furan-based bio-oil and cellulose citrate was realized avoiding the use of strong inorganic acids, drastic conditions, enzymatic treatments or microorganism fermentation. This innovative method is very eco-friendly and involves the use of molten citric acid under solvent free conditions at atmospheric pressure. An accurate discussion on chemical composition of the bio-oil enriched in bioprivileged molecules as well as structural and morphological characterization of cellulose citrate was reported. Moreover, mechanistic hypotheses were formulated on the basis of experimental findings and detailed DFT quantum-mechanical simulations were carried out to confirm, step by step, the proposed reaction paths.

11.
J Agric Food Chem ; 68(35): 9461-9474, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32809829

RESUMO

Digestates, a byproduct of the anaerobic bioconversion of organic wastes for the production of biogas, are highly variable in chemical and biological properties, thus limiting their potential use in agriculture as soil amendment. Using a lab-scale glass reactor, we aimed to assess the feasibility to chemically stabilize the solid fraction of an anaerobic digestate by applying a Fenton reaction under constant pH (3.0), temperature (70 °C), reaction time (8 h), and various combinations of H2O2 and Fe2+. In Fenton-treated samples, the phytotoxic potential (determined on a test plant), total phenols, and the bad smell odor index markedly declined, whereas total C and N remained unaltered. Thermogravimetric (TG) analysis and Fourier transform infrared (FT-IR) spectroscopy revealed contrasting changes in extracted humic and fulvic fractions being increased or depleted, respectively, in aromatic substances. Process feasibility and optimum conditions for an effective biomass stabilization were achieved with a H2O2/Fe2+ ratio between 0.02 and 0.03.


Assuntos
Substâncias Húmicas/análise , Peróxido de Hidrogênio/química , Ferro/química , Solo/química , Anaerobiose , Benzopiranos/análise , Biomassa , Concentração de Íons de Hidrogênio
12.
ACS Appl Mater Interfaces ; 11(13): 12202-12208, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30900442

RESUMO

Fluorescent light modulation by small electric potentials has gained huge interest in the past few years. This phenomenon, called electrofluorochromism, is of the utmost importance for applications in optoelectronic devices. Huge efforts are being addressed to developing electrofluorochromic systems with improved performances. One of the most critical issue is their low cyclability, which hampers their widespread use. It mostly depends on the intrinsic reversibility of the electroactive/fluorophore molecular system and on device architecture. Here we show a novel fluorene-based mixed-valence electrofluorochromic system that allows direct electrofluorochromic switching and exhibits incomparable electrochemical reversibility and device cyclability of more than 10 000 cycles.

13.
Chemosphere ; 201: 530-539, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29533802

RESUMO

Remediation of water bodies from petroleum hydrocarbons is of the utmost importance due to health risks related to the high toxicity, mutagenicity and carcinogenicity of the hydrocarbons components that may enter into the food chain. Though several methods were proposed to face up this challenge, they are generally not easily feasible at a contaminated site and quite costly. Here we propose a green, cost-effective technology based on hydrophobized Spanish Broom (SB) cellulose fiber. The natural cellulose fiber was extracted by alkaline digestion of the raw vegetable. The hydrophilic cellulose surface was transformed into a hydrophobic one by the reaction with 4,4'-diphenylmethane diisocyanate (MDI) forming a very stable urethane linkage with the hydroxyl groups of cellulose emerging from the fibers surface. Chemical functionalization was performed with a novel solvent-free technology based on a home-made still reactor were the fiber was kept under vortex stirring and the MDI reactant then spread onto the fiber surface by nebulizing it in form of micrometer-sized droplets. The functionalized fiber, characterized by means of WCA measurements, XPS and ATR-FTIR spectroscopy, shows fast adsorption kinetics adsorption capacity as high as 220 mg/g, among the highest ever reported so far in the literature for cellulosic materials.


Assuntos
Celulose/química , Recuperação e Remediação Ambiental/métodos , Hidrocarbonetos/isolamento & purificação , Interações Hidrofóbicas e Hidrofílicas , Adsorção , Cinética , Petróleo , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/isolamento & purificação
14.
Artigo em Inglês | MEDLINE | ID: mdl-30384467

RESUMO

The aim of this study is to examine the efficiency of biobased Spanish broom (SB) surface modified cellulose fibers to remove bisphenol A (BPA), a well-known endocrine disruptor, from water. Spanish brooms are flowering plants, which are native and abundant to Mediterranean regions. The functionalized fibers (FF) were found to have the best adsorption efficiency at pH 5, due to the optimal hydrophobic interaction between the FF fiber and BPA. Adsorption kinetics of BPA was found to fit well a pseudo-second order reaction. Equilibrium isotherm data were fitted by Langmuir and Freundlich models. A very fast and simple regeneration method was developed and it was observed that adsorption capacity of the fibers was kept almost unchanged after 3 consecutive uses. Bottled water and synthetic wastewater were also tested to assess the efficiency of the process under more realistic water and wastewater treatment conditions. It was found that BPA removal was slightly decreased from 77% in ultrapure water to 64% in synthetic wastewater matrix, indicating that FF has a high selectivity toward BPA, even in the presence of other organic compounds. Overall, it was observed that SB-modified fibers can be a new promising green biotechnology for water purification.


Assuntos
Adsorção/fisiologia , Compostos Benzidrílicos/química , Celulose/química , Disruptores Endócrinos/efeitos adversos , Fenóis/química , Spartium/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Região do Mediterrâneo , Águas Residuárias/química
15.
J Agric Food Chem ; 55(23): 9489-95, 2007 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-17944531

RESUMO

In the past decade interest in biopolymers has increased. Attempts were made to prepare new composite systems from biopolymers by binding different synthetic polymers to a biopolymer backbone. This paper reports the synthesis and characterization of derivatized broom fibers to prepare composites with either degradability or fireproofing properties. Synthetic strategies are described for the introduction of polymerizable functional groups or fluorine atoms on the glucose of cellulose chains of broom. The fibers containing polymerizable groups were copolymerized with dimethylacrylamide and styrene and, after that, investigated by optical polarizing microscopy (OPM) and scanning electron microscopy analysis (SEM). The materials containing fluorine were submitted to thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) for the purpose of verifying the fireproofing. Such derivatized biomaterials could be successfully used for applications in agriculture and in the packaging area.


Assuntos
Biopolímeros/química , Spartium/química , Acrilamidas/química , Retardadores de Chama , Flúor/química , Polímeros/síntese química , Estireno/química
16.
Eur J Pharm Sci ; 99: 105-112, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27931851

RESUMO

In this work, we propose as new wound dressing, the Spanish Broom fibers impregnated with vancomycin (VM) loaded chitosan nanoparticles. Spanish Broom fibers were extracted by patented method DiCoDe and the morphological, physical and mechanical properties were investigated. Chitosan nanoparticles were prepared by ionic gelation using different weight ratios between chitosan (CH) and tripolyphosphate (TPP). Nanoparticles were characterized in terms of size, zeta potential, yield, encapsulation efficiency, stability and drug release. Finally, the antibacterial activity against Staphylococcus aureus as well as in vitro cytotoxicity on HaCaT cells were evaluated. The best formulation CH/TPP 4:1 was selected based on the encapsulation efficiency and yield. Spanish Broom fibers impregnated with loaded nanoparticles showed an increased antibacterial activity against S. aureus compared to the same fibers containing VM without nanoparticles. Moreover, these fibers were not toxic to HaCaT keratinocytes cells. In conclusion, Spanish Broom fibers impregnated with VM loaded CH/TPP nanoparticles would appear to be a promising candidate for wound dressing application.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Quitosana/química , Nanopartículas/química , Spartium/química , Vancomicina/química , Vancomicina/farmacologia , Bandagens , Química Farmacêutica/métodos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Géis/química , Tamanho da Partícula , Preparações de Plantas/química , Preparações de Plantas/farmacologia , Polifosfatos/química , Staphylococcus aureus/efeitos dos fármacos
17.
Anticancer Res ; 25(2A): 1009-13, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15868940

RESUMO

Our previous work showed that low-power wide-band millimeter waves (MMW) inhibit the growth of the MCF-7 human breast carcinoma cell line, also causing a marked reduction of the density of microvilli at the apical membrane of the MCF-7 cells, as revealed by scanning electron microscopy. The aim of the present work was to investigate the ultrastructural changes induced by such electromagnetic radiations on this cell line. A transmission electron microscopy study was performed on MCF-7 cells irradiated under the same experimental conditions previously adopted. Transmission electron microscopy analysis revealed several ultrastructural features of the MMW-irradiated cells pertinent to cells subjected to sublethal injury. The antiproliferative effect of the millimeter radiation was confirmed. MMW, in the 52-78 GHz frequency range, act as stress factor on the cells that survive in a non-steady low-mitogenetic metabolic state.


Assuntos
Neoplasias da Mama/radioterapia , Neoplasias da Mama/ultraestrutura , Campos Eletromagnéticos , Linhagem Celular Tumoral/efeitos da radiação , Humanos , Microscopia Eletrônica de Transmissão , Micro-Ondas
18.
Anticancer Res ; 25(2A): 1023-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15868942

RESUMO

The biological effects produced by low power millimeter waves (MMW) were studied on the RPMI 7932 human melanoma cell line. Three different frequency-type irradiation modes were used: the 53.57-78.33 GHz wide-band frequency range, the 51.05 GHz and the 65.00 GHz monochromatic frequencies. In all three irradiation conditions, the radiation energy was low enough not to increase the temperature of the cellular samples. Three hours of radiation treatment, applied every day to the melanoma cell samples, were performed at each frequency exposure condition. The wide-band irradiation treatment effectively inhibited cell growth, while both the monochromatic irradiation treatments did not affect the growth trend of RPMI 7932 cells. A light microscopy analysis revealed that the low-intensity wide-band millimeter radiation induced significant morphological alterations on these cells. Furthermore, a histochemical study revealed the low proliferative state of the irradiated cells. This work provides further evidence of the antiproliferative effects on tumor cells induced by low power MMW in the 50-80 GHz frequency range of the electromagnetic spectrum.


Assuntos
Campos Eletromagnéticos , Melanoma/radioterapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Humanos , Luz , Melanoma/patologia , Microscopia , Micro-Ondas
19.
Nat Prod Commun ; 10(4): 547-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25973472

RESUMO

Linalool, a small monoterpene molecule, is used widely for its flavoring and fragrant properties in many cosmetic products. In this work, we investigated the antiproliferative effect of two different linalool solutions on RPMI 7932 human melanoma and NCTC 2544 normal keratinocites cell lines using the trypan blue method. Morphological changes in cells were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, apoptosis was evaluated using caspase 3-antibody. Linalool showed a selective inhibitory effect on the growth of melanoma cells in a concentrationdependent manner, inducing several morphological changes, as revealed by SEM and TEM analysis. Moreover, the labelling for caspase-3 is abundant in the melanoma cells and almost absent in the normal keratinocites cells. The results suggest that linalool could be used as drug and/or as model drug for developing potential therapeutic agents for melanoma.


Assuntos
Antineoplásicos/farmacologia , Melanoma/tratamento farmacológico , Melanoma/ultraestrutura , Monoterpenos/farmacologia , Monoterpenos Acíclicos , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Monoterpenos/química
20.
Anticancer Res ; 22(3): 1681-8, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12168854

RESUMO

The effects of low power millimetric wave (MMW) radiation on the growth of tumor and healthy cells were studied. A wide-band frequency range between 53.57-78.33 GHz with a radiation density power of 27 x 10(-17) watt/Hz were used. The radiating energy was low enough not to increase the temperature of the cellular samples (cold irradiation). One hour of radiation treatment given every other day to three tumoral human stable cell lines, produced a noticeable inhibition of the cellular growth. The analogous treatment given to two healthy cell lines gave a weak growth stimulation. A scanning electron microscopy study of MCF-7-and K562-irradiated cells revealed that MMW irradiation induced profound morphological changes of the membrane. Finally, we also provided a mechanistic indication, based on millimeter wave spectroscopy of the cells: water is the primary absorber of these electromagnetic waves. Our work provides interesting evidence that wide band low power MMW irradiation, in the appropriate frequency range, could be used in the future as a cold means to cause selective inhibition of tumor cell growth.


Assuntos
Neoplasias da Mama/radioterapia , Campos Eletromagnéticos , Neoplasias da Mama/patologia , Divisão Celular/efeitos da radiação , Humanos , Células K562/patologia , Células K562/efeitos da radiação , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA