Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 510(7506): 547-51, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24870244

RESUMO

Insulin constitutes a principal evolutionarily conserved hormonal axis for maintaining glucose homeostasis; dysregulation of this axis causes diabetes. PGC-1α (peroxisome-proliferator-activated receptor-γ coactivator-1α) links insulin signalling to the expression of glucose and lipid metabolic genes. The histone acetyltransferase GCN5 (general control non-repressed protein 5) acetylates PGC-1α and suppresses its transcriptional activity, whereas sirtuin 1 deacetylates and activates PGC-1α. Although insulin is a mitogenic signal in proliferative cells, whether components of the cell cycle machinery contribute to its metabolic action is poorly understood. Here we report that in mice insulin activates cyclin D1-cyclin-dependent kinase 4 (Cdk4), which, in turn, increases GCN5 acetyltransferase activity and suppresses hepatic glucose production independently of cell cycle progression. Through a cell-based high-throughput chemical screen, we identify a Cdk4 inhibitor that potently decreases PGC-1α acetylation. Insulin/GSK-3ß (glycogen synthase kinase 3-beta) signalling induces cyclin D1 protein stability by sequestering cyclin D1 in the nucleus. In parallel, dietary amino acids increase hepatic cyclin D1 messenger RNA transcripts. Activated cyclin D1-Cdk4 kinase phosphorylates and activates GCN5, which then acetylates and inhibits PGC-1α activity on gluconeogenic genes. Loss of hepatic cyclin D1 results in increased gluconeogenesis and hyperglycaemia. In diabetic models, cyclin D1-Cdk4 is chronically elevated and refractory to fasting/feeding transitions; nevertheless further activation of this kinase normalizes glycaemia. Our findings show that insulin uses components of the cell cycle machinery in post-mitotic cells to control glucose homeostasis independently of cell division.


Assuntos
Ciclo Celular , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Transdução de Sinais , Acetilação , Aminoácidos/farmacologia , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Células Cultivadas , Ciclina D1/deficiência , Ciclina D1/genética , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Diabetes Mellitus/metabolismo , Ativação Enzimática , Jejum , Deleção de Genes , Gluconeogênese/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Histona Acetiltransferases/metabolismo , Homeostase , Humanos , Hiperglicemia/metabolismo , Hiperinsulinismo/metabolismo , Masculino , Camundongos , Fosforilação , RNA Mensageiro/análise , RNA Mensageiro/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos
2.
Mol Cell ; 48(6): 900-13, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23142079

RESUMO

Hepatic glucose production (HGP) maintains blood glucose levels during fasting but can also exacerbate diabetic hyperglycemia. HGP is dynamically controlled by a signaling/transcriptional network that regulates the expression/activity of gluconeogenic enzymes. A key mediator of gluconeogenic gene transcription is PGC-1α. PGC-1α's activation of gluconeogenic gene expression is dependent upon its acetylation state, which is controlled by the acetyltransferase GCN5 and the deacetylase Sirt1. Nevertheless, whether other chromatin modifiers-particularly other sirtuins-can modulate PGC-1α acetylation is currently unknown. Herein, we report that Sirt6 strongly controls PGC-1α acetylation. Surprisingly, Sirt6 induces PGC-1α acetylation and suppresses HGP. Sirt6 depletion decreases PGC-1α acetylation and promotes HGP. These acetylation effects are GCN5 dependent: Sirt6 interacts with and modifies GCN5, enhancing GCN5's activity. Lepr(db/db) mice, an obese/diabetic animal model, exhibit reduced Sirt6 levels; ectopic re-expression suppresses gluconeogenic genes and normalizes glycemia. Activation of hepatic Sirt6 may therefore be therapeutically useful for treating insulin-resistant diabetes.


Assuntos
Gluconeogênese , Hepatócitos/metabolismo , Sirtuínas/fisiologia , Transativadores/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Animais , Glicemia , Linhagem Celular , Ativação Enzimática , Expressão Gênica , Gluconeogênese/genética , Hepatócitos/enzimologia , Humanos , Fígado/enzimologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Obesos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosforilação , Processamento de Proteína Pós-Traducional , Sirtuína 1/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Fatores de Transcrição
3.
Mol Cell ; 44(6): 851-63, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22195961

RESUMO

The NAD(+)-dependent deacetylase SIRT1 is an evolutionarily conserved metabolic sensor of the Sirtuin family that mediates homeostatic responses to certain physiological stresses such as nutrient restriction. Previous reports have implicated fluctuations in intracellular NAD(+) concentrations as the principal regulator of SIRT1 activity. However, here we have identified a cAMP-induced phosphorylation of a highly conserved serine (S434) located in the SIRT1 catalytic domain that rapidly enhanced intrinsic deacetylase activity independently of changes in NAD(+) levels. Attenuation of SIRT1 expression or the use of a nonphosphorylatable SIRT1 mutant prevented cAMP-mediated stimulation of fatty acid oxidation and gene expression linked to this pathway. Overexpression of SIRT1 in mice significantly potentiated the increases in fatty acid oxidation and energy expenditure caused by either pharmacological ß-adrenergic agonism or cold exposure. These studies support a mechanism of Sirtuin enzymatic control through the cAMP/PKA pathway with important implications for stress responses and maintenance of energy homeostasis.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Ácidos Graxos/metabolismo , NAD/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosforilação , Fosfosserina/metabolismo , Transativadores/metabolismo , Fatores de Transcrição
4.
Ann Pharmacother ; 49(1): 107-12, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25258420

RESUMO

OBJECTIVE: To review ceritinib for the treatment of anaplastic lymphoma kinase (ALK)-positive metastatic non-small-cell lung cancer (NSCLC). DATA SOURCES: Literature searches were conducted in PubMed, EMBASE (1974 to July week 5, 2014), and Google Scholar using the terms ceritinib, LDK378, and non-small-cell lung cancer. STUDY SELECTION AND DATA EXTRACTION: One phase 1 trial and 2 abstracts were identified. DATA SYNTHESIS: Ceritinib is approved for the treatment of ALK-positive metastatic NSCLC in patients who are intolerant to or have progressed despite therapy with crizotinib. In the phase 1 clinical trial, the maximum tolerated dose was determined to be 750 mg once daily. The overall response rate (ORR) was 58% (95% CI = 48-67) in patients who received ≥400 mg daily (n = 114). In this group, the ORR was 56% (95% CI = 41-67) and 62% (95% CI = 44-78) among crizotinib-exposed and -naïve patients, respectively. The ORR was 59% (95% CI = 47-70) in patients who received 750 mg daily (n = 78). The ORR was 56% (95% CI = 41-70) in crizotinib-treated patients and 64% (95% CI = 44-81) in crizotinib-naïve patients, respectively, in this subset. The median duration of response was 8.2 months. Median progression-free survival was 7.0 months. The most common adverse reactions included diarrhea, nausea, vomiting, abdominal pain, anorexia, constipation, fatigue, and elevated transaminases. CONCLUSIONS: Ceritinib has activity in crizotinib-resistant and crizotinib-naïve patients and appears to be a viable alternative for ALK-positive NSCLC. Long-term data are needed to further define the role of ceritinib in the treatment of NSCLC.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Sulfonas/uso terapêutico , Antineoplásicos/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/secundário , Ensaios Clínicos Fase I como Assunto , Diarreia/induzido quimicamente , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Pulmonares/patologia , Náusea/induzido quimicamente , Inibidores de Proteínas Quinases/efeitos adversos , Pirimidinas/efeitos adversos , Sulfonas/efeitos adversos , Vômito/induzido quimicamente
5.
Mol Endocrinol ; 28(3): 308-16, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24467246

RESUMO

Insulin sensitivity in liver is characterized by the ability of insulin to efficiently inhibit glucose production and fatty acid oxidation as well as promote de novo lipid biosynthesis. Specific dysregulation of glucose and lipid metabolism in liver is sufficient to cause insulin resistance and type 2 diabetes; this is seen by a selective inability of insulin to suppress glucose production while remaining insulin-sensitive to de novo lipid biosynthesis. We have previously shown that the transcription factor Yin Yang 1 (YY1) controls diabetic-linked glucose and lipid metabolism gene sets in skeletal muscle, but whether liver YY1-targeted metabolic genes impact a diabetic phenotype is unknown. Here we show that decreased genetic dosage of YY1 in liver causes insulin resistance, hepatic lipid accumulation, and dyslipidemia. Indeed, YY1 liver-specific heterozygous mice exhibit blunted activation of hepatic insulin signaling in response to insulin. Mechanistically, YY1, through direct recruitment to promoters, functions as a suppressor of genes encoding for metabolic enzymes of the gluconeogenic and lipogenic pathways and as an activator of genes linked to fatty acid oxidation. These counterregulatory transcriptional activities make targeting hepatic YY1 an attractive approach for treating insulin-resistant diabetes.


Assuntos
Diabetes Mellitus Tipo 2/genética , Dosagem de Genes , Fígado/metabolismo , Fator de Transcrição YY1/genética , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Dislipidemias/genética , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Heterozigoto , Homeostase , Resistência à Insulina/genética , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Oxirredução , Fator de Transcrição YY1/deficiência
6.
Cancer Cell ; 23(3): 287-301, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23416000

RESUMO

Cancer cells reprogram their metabolism using different strategies to meet energy and anabolic demands to maintain growth and survival. Understanding the molecular and genetic determinants of these metabolic programs is critical to successfully exploit them for therapy. Here, we report that the oncogenic melanocyte lineage-specification transcription factor MITF drives PGC1α (PPARGC1A) overexpression in a subset of human melanomas and derived cell lines. Functionally, PGC1α positive melanoma cells exhibit increased mitochondrial energy metabolism and reactive oxygen species (ROS) detoxification capacities that enable survival under oxidative stress conditions. Conversely, PGC1α negative melanoma cells are more glycolytic and sensitive to ROS-inducing drugs. These results demonstrate that differences in PGC1α levels in melanoma tumors have a profound impact in their metabolism, biology, and drug sensitivity.


Assuntos
Proteínas de Choque Térmico/metabolismo , Melanócitos/metabolismo , Melanoma/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Fatores de Transcrição/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Metabolismo Energético , Células HEK293 , Proteínas de Choque Térmico/genética , Humanos , Camundongos , Fator de Transcrição Associado à Microftalmia/metabolismo , Consumo de Oxigênio , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Interferência de RNA , RNA Interferente Pequeno , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética
7.
Cell Metab ; 15(4): 505-17, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22482732

RESUMO

Rapamycin and its derivatives are mTOR inhibitors used in tissue transplantation and cancer therapy. A percentage of patients treated with these inhibitors develop diabetic-like symptoms, but the molecular mechanisms are unknown. We show here that chronic rapamycin treatment in mice led to insulin resistance with suppression of insulin/IGF signaling and genes associated within this pathway, such as Igf1-2, Irs1-2, and Akt1-3. Importantly, skeletal muscle-specific YY1 knockout mice were protected from rapamycin-induced diabetic-like symptoms. This protection was caused by hyperactivation of insulin/IGF signaling with increased gene expression in this cascade that, in contrast to wild-type mice, was not suppressed by rapamycin. Mechanistically, rapamycin induced YY1 dephosphorylation and recruitment to promoters of insulin/IGF genes, which promoted interaction with the polycomb protein-2 corepressor. This was associated with H3K27 trimethylation leading to decreased gene expression and insulin signaling. These results have implications for rapamycin action in human diseases and biological processes such as longevity.


Assuntos
Diabetes Mellitus Experimental/prevenção & controle , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Fator de Transcrição YY1/deficiência , Animais , Diabetes Mellitus Experimental/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Regulação da Expressão Gênica/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Resistência à Insulina/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Lisina/metabolismo , Metilação/efeitos dos fármacos , Camundongos , Camundongos Knockout , Modelos Biológicos , Músculo Esquelético/efeitos dos fármacos , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Transdução de Sinais/genética , Fator de Transcrição YY1/metabolismo
8.
Mol Cell Biol ; 32(16): 3333-46, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22711985

RESUMO

The formation, distribution, and maintenance of functional mitochondria are achieved through dynamic processes that depend strictly on the transcription of nuclear genes encoding mitochondrial proteins. A large number of these mitochondrial genes contain binding sites for the transcription factor Yin Yang 1 (YY1) in their proximal promoters, but the physiological relevance is unknown. We report here that skeletal-muscle-specific YY1 knockout (YY1mKO) mice have severely defective mitochondrial morphology and oxidative function associated with exercise intolerance, signs of mitochondrial myopathy, and short stature. Gene set enrichment analysis (GSEA) revealed that the top pathways downregulated in YY1mKO mice were assigned to key metabolic and regulatory mitochondrial genes. This analysis was consistent with a profound decrease in the level of mitochondrial proteins and oxidative phosphorylation (OXPHOS) bioenergetic function in these mice. In contrast to the finding for wild-type mice, inactivation of the mammalian target of rapamycin (mTOR) did not suppress mitochondrial genes in YY1mKO mice. Mechanistically, mTOR-dependent phosphorylation of YY1 resulted in a strong interaction between YY1 and the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α), a major regulator of mitochondrial function. These results underscore the important role of YY1 in the maintenance of mitochondrial function and explain how its inactivation might contribute to exercise intolerance and mitochondrial myopathies.


Assuntos
Mitocôndrias/metabolismo , Fator de Transcrição YY1/genética , Alelos , Animais , Metabolismo Energético/fisiologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Fosforilação Oxidativa , Fenótipo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Fator de Transcrição YY1/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA