RESUMO
The tumor microenvironment is a complex and dynamic ecosystem composed of various physical cues and biochemical signals that facilitate cancer progression, and tumor-associated macrophages are especially of interest as a treatable target due to their diverse pro-tumorigenic functions. Engineered three-dimensional models of tumors more effectively mimic the tumor microenvironment than monolayer cultures and can serve as a platform for investigating specific aspects of tumor biology within a controlled setting. To study the combinatorial effects of tumor-associated macrophages and microenvironment mechanical properties on osteosarcoma, we co-cultured human osteosarcoma cells with macrophages within biomaterials-based bone tumor niches with tunable stiffness. In the first 24 h of direct interaction between the two cell types, macrophages induced an inflammatory environment consisting of high concentrations of tumor necrosis factor alpha (TNFα) and interleukin (IL)-6 within moderately stiff scaffolds. Expression of Yes-associated protein (YAP), but not its homolog, transcriptional activator with PDZ-binding motif (TAZ), in osteosarcoma cells was significantly higher than in macrophages, and co-culture of the two cells slightly upregulated YAP in both cells, although not to a significant degree. Resistance to doxorubicin treatment in osteosarcoma cells was correlated with inflammation in the microenvironment, and signal transducer and activator of transcription 3 (STAT3) inhibition diminished the inflammation-related differences in drug resistance but ultimately did not improve the efficacy of doxorubicin. This work highlights that the biochemical cues conferred by tumor-associated macrophages in osteosarcoma are highly variable, and signals derived from the immune system should be considered in the development and testing of novel drugs for cancer.
Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Ecossistema , Osteossarcoma/patologia , Neoplasias Ósseas/patologia , Interleucina-6/metabolismo , Doxorrubicina/uso terapêutico , Resistência a Medicamentos , Inflamação , Microambiente TumoralRESUMO
Extrusion bioprinted constructs for osteochondral tissue engineering were fabricated to study the effect of multi-material architecture on encapsulated human mesenchymal stem cells' tissue-specific matrix deposition and integration into an ex vivo porcine osteochondral explant model. Two extrusion fiber architecture groups with differing transition regions and degrees of bone- and cartilage-like bioink mixing were employed. The gradient fiber (G-Fib) architecture group showed an increase in chondral integration over time, 18.5 ± 0.7 kPa on Day 21 compared to 9.6 ± 1.6 kPa on Day 1 for the required peak push-out force, and the segmented fiber (S-Fib) architecture group did not, which corresponded to the increase in sulfated glycosaminoglycan deposition noted only in the G-Fib group and the staining for cellularity and tissue-specific matrix deposition at the fiber-defect boundary. Conversely, the S-Fib architecture was associated with significant mineralization over time, but the G-Fib architecture was not. Notably, both fiber groups also had similar chondral integration as a re-inserted osteochondral tissue control. While architecture did dictate differences in the cells' responses to their environment, architecture was not shown to distinguish a statistically significant difference in tissue integration via fiber push-out testing within a given time point or explant region. Use of this three-week osteochondral model demonstrates that these bioink formulations support the fabrication of cell-laden constructs that integrate into explanted tissue as capably as natural tissue and encapsulate osteochondral matrix-producing cells, and it also highlights the important role that spatial architecture plays in the engineering of multi-phasic tissue environments. STATEMENT OF SIGNIFICANCE: Here, an ex vivo model was used to interrogate fundamental questions about the effect of multi-material scaffold architectural choices on osteochondral tissue integration. Cell-encapsulating constructs resembling stratified osteochondral tissue were 3D printed with architecture consisting of either gradient transitions or segmented transitions between the bone-like and cartilage-like bioink regions. The printed constructs were assessed alongside re-inserted natural tissue plugs via mechanical tissue integration push-out testing, biochemical assays, and histology. Differences in osteochondral matrix deposition were observed based on architecture, and both printed groups demonstrated cartilage integration similar to the native tissue plug group. As 3D printing becomes commonplace within biomaterials and tissue engineering, this work illustrates critical 3D co-culture interactions and demonstrates the importance of considering architecture when interpreting the results of studies utilizing spatially complex, multi-material scaffolds.
Assuntos
Bioimpressão , Células-Tronco Mesenquimais , Suínos , Humanos , Animais , Alicerces Teciduais , Engenharia Tecidual/métodos , Materiais Biocompatíveis/farmacologia , Cartilagem , Impressão Tridimensional , Bioimpressão/métodosRESUMO
Osteosarcoma (OS) is a genetically diverse bone cancer that lacks a consistent targetable mutation. Recent studies suggest the IGF/PI3K/mTOR pathway and YAP/TAZ paralogs regulate cell fate and proliferation in response to biomechanical cues within the tumor microenvironment. How this occurs and their implication upon osteosarcoma survival, remains poorly understood. Here, we show that IGF-1R can translocate into the nucleus, where it may act as part of a transcription factor complex. To explore the relationship between YAP/TAZ and total and nuclear phosphorylated IGF-1R (pIGF-1R), we evaluated sequential tumor sections from a 37-patient tissue microarray by confocal microscopy. Next, we examined the relationship between stained markers, clinical disease characteristics, and patient outcomes. The nuclear to cytoplasmic ratios (N:C ratio) of YAP and TAZ strongly correlated with nuclear pIGF-1R (r = 0.522, p = 0.001 for each pair). Kaplan-Meier analyses indicated that nuclear pIGF-1R predicted poor overall survival, a finding confirmed in the Cox proportional hazards model. Though additional investigation in a larger prospective study will be required to validate the prognostic accuracy of these markers, our results may have broad implications for the new class of YAP, TAZ, AXL, or TEAD inhibitors that have reached early phase clinical trials this year.
Assuntos
Neoplasias Ósseas , Osteossarcoma , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Ósseas/metabolismo , Feminino , Humanos , Osteossarcoma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Placentário/metabolismo , Estudos Prospectivos , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microambiente TumoralRESUMO
Growth factors such as bone morphogenetic protein-2 (BMP-2) are potent tools for tissue engineering. Three-dimensional (3D) printing offers a potential strategy for delivery of BMP-2 from polymeric constructs; however, these biomolecules are sensitive to inactivation by the elevated temperatures commonly employed during extrusion-based 3D printing. Therefore, we aimed to correlate printing temperature to the bioactivity of BMP-2 released from 3D printed constructs composed of a model polymer, poly(propylene fumarate). Following encapsulation of BMP-2 in poly(DL-lactic-co-glycolic acid) particles, growth factor-loaded fibers were fabricated at three different printing temperatures. Resulting constructs underwent 28 days of aqueous degradation for collection of released BMP-2. Supernatants were then assayed for the presence of bioactive BMP-2 using a cellular assay for alkaline phosphatase activity. Cumulative release profiles indicated that BMP-2 released from constructs that were 3D printed at physiologic and intermediate temperatures exhibited comparable total amounts of bioactive BMP-2 release as those encapsulated in non-printed particulate delivery vehicles. Meanwhile, the elevated printing temperature of 90 °C resulted in a decreased amount of total bioactive BMP-2 release from the fibers. These findings elucidate the effects of elevated printing temperatures on BMP-2 bioactivity during extrusion-based 3D printing, and enlighten polymeric material selection for 3D printing with growth factors.
Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Impressão Tridimensional , Alicerces Teciduais , Animais , Linhagem Celular , Fumaratos/química , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Polipropilenos/química , TemperaturaRESUMO
Investigations of cancer biology and screening of potential therapeutics for efficacy and safety begin in the preclinical laboratory setting. A staple of most basic research in cancer involves the use of tissue culture plates, on which immortalized cell lines are grown in monolayers. However, this practice has been in use for over six decades and does not account for vital elements of the tumor microenvironment that are thought to aid in initiation, propagation, and ultimately, metastasis of cancer. Furthermore, information gleaned from these techniques does not always translate to animal models or, more crucially, clinical trials in cancer patients. Osteosarcoma (OS) and Ewing sarcoma (ES) are the most common primary tumors of bone, but outcomes for patients with metastatic or recurrent disease have stagnated in recent decades. The unique elements of the bone tumor microenvironment have been shown to play critical roles in the pathogenesis of these tumors and thus should be incorporated in the preclinical models of these diseases. In recent years, the field of tissue engineering has leveraged techniques used in designing scaffolds for regenerative medicine to engineer preclinical tumor models that incorporate spatiotemporal control of physical and biological elements. We herein review the clinical aspects of OS and ES, critical elements present in the sarcoma microenvironment, and engineering approaches to model the bone tumor microenvironment. Impact statement The current paradigm of cancer biology investigation and therapeutic testing relies heavily on monolayer, monoculture methods developed over half a century ago. However, these methods often lack essential hallmarks of the cancer microenvironment that contribute to tumor pathogenesis. Tissue engineers incorporate scaffolds, mechanical forces, cells, and bioactive signals into biological environments to drive cell phenotype. Investigators of bone sarcomas, aggressive tumors that often rob patients of decades of life, have begun to use tissue engineering techniques to devise in vitro models for these diseases. Their efforts highlight how critical elements of the cancer microenvironment directly affect tumor signaling and pathogenesis.
Assuntos
Neoplasias Ósseas/patologia , Modelos Biológicos , Sarcoma/patologia , Transdução de Sinais , Microambiente Tumoral , Animais , Neoplasias Ósseas/imunologia , Humanos , Sarcoma/imunologia , Engenharia TecidualRESUMO
In this work, we describe a new 3D printing methodology for the fabrication of multimaterial scaffolds involving the combination of thermoplastic extrusion and low temperature extrusion of bioinks. A fiber engraving technique was used to create a groove on the surface of a thermoplastic printed fiber using a commercial 3D printer and a low viscosity bioink was deposited into this groove. In contrast to traditional extrusion bioinks that rely on increased viscosity to prevent lateral spreading, this groove creates a defined space for bioink deposition. By physically constraining bioink spreading, a broader range of viscosities can be used. As proof-of-concept, we fabricated and characterized a multimaterial scaffold containing poly(ε-caprolactone) (PCL) as the thermoplastic polymer and a gelatin-based bioink. A 7.5 w/v% gelatin methacryloyl (GelMA) bioink loaded with either 5 w/v% poly(lactic-co-glycolic acid) (PLGA) microparticles containing fluorescent albumin or mouse fibroblasts (1 × 106 cell/mL) was printed at 24 °C. The structure of the composite scaffolds had no significant decrease in porosity or mechanical properties as compared to the PCL control scaffolds, demonstrating the engraving technique did not significantly compromise the mechanical or structural integrity of the scaffold. The encapsulated PLGA microparticles were homogeneously distributed in the GelMA and remained in the scaffolds after incubation in PBS for 24 h at 37 °C. In addition, the viability of the fibroblasts encapsulated in the GelMA bioink and printed in the grooves of the PCL scaffolds was confirmed after 24 h of incubation. Overall, this work provides a new methodology for the preparation of 3D printed scaffolds containing a robust thermoplastic structure in combination with low viscosity bioinks.
RESUMO
The tumor microenvironment harbors essential components required for cancer progression including biochemical signals and mechanical cues. To study the effects of microenvironmental elements on Ewing's sarcoma (ES) pathogenesis, we tissue-engineered an acellular three-dimensional (3D) bone tumor niche from electrospun poly(ε-caprolactone) (PCL) scaffolds that incorporate bone-like architecture, extracellular matrix (ECM), and mineralization. PCL-ECM constructs were generated by decellularizing PCL scaffolds harboring cultures of osteogenic human mesenchymal stem cells. The PCL-ECM constructs simulated in vivo-like tumor architecture and increased the proliferation of ES cells compared to PCL scaffolds alone. Compared to monolayer controls, 3D environments facilitated the downregulation of the canonical insulin-like growth factor 1 receptor (IGF-1R) signal cascade through mechanistic target of rapamycin (mTOR), both of which are targets of recent clinical trials. In addition to the downregulation of canonical IGF-1R signaling, 3D environments promoted a reduction in the clathrin-dependent nuclear localization and transcriptional activity of IGF-1R. In vitro drug testing revealed that 3D environments generated cell phenotypes that were resistant to mTOR inhibition and chemotherapy. Our versatile PCL-ECM constructs allow for the investigation of the roles of various microenvironmental elements in ES tumor growth, cancer cell morphology, and induction of resistant cell phenotypes.
Assuntos
Neoplasias Ósseas , Sarcoma de Ewing , Neoplasias Ósseas/tratamento farmacológico , Osso e Ossos , Matriz Extracelular , Humanos , Sarcoma de Ewing/tratamento farmacológico , Engenharia Tecidual , Microambiente TumoralRESUMO
Current in vitro methods for assessing cancer biology and therapeutic response rely heavily on monolayer cell culture on hard, plastic surfaces that do not recapitulate essential elements of the tumor microenvironment. While a host of tumor models exist, most are not engineered to control the physical properties of the microenvironment and thus may not reflect the effects of mechanotransduction on tumor biology. Utilizing coaxial electrospinning, we developed three-dimensional (3D) tumor models with tunable mechanical properties in order to elucidate the effects of substrate stiffness and tissue architecture in osteosarcoma. Mechanical properties of coaxial electrospun meshes were characterized with a series of macroscale testing with uniaxial tensile testing and microscale testing utilizing atomic force microscopy on single fibers. Calculated moduli in our models ranged over three orders of magnitude in both macroscale and microscale testing. Osteosarcoma cells responded to decreasing substrate stiffness in 3D environments by increasing nuclear localization of Hippo pathway effectors, YAP and TAZ, while downregulating total YAP. Additionally, a downregulation of the IGF-1R/mTOR axis, the target of recent clinical trials in sarcoma, was observed in 3D models and heralded increased resistance to combination chemotherapy and IGF-1R/mTOR targeted agents compared to monolayer controls. In this study, we highlight the necessity of incorporating mechanical cues in cancer biology investigation and the complexity in mechanotransduction as a confluence of stiffness and culture architecture. Our models provide a versatile, mechanically variable substrate on which to study the effects of physical cues on the pathogenesis of tumors. STATEMENT OF SIGNIFICANCE: The tumor microenvironment plays a critical role in cancer pathogenesis. In this work, we engineered 3D, mechanically tunable, coaxial electrospun environments to determine the roles of the mechanical environment on osteosarcoma cell phenotype, morphology, and therapeutic response. We characterize the effects of varying macroscale and microscale stiffnesses in 3D environments on the localization and expression of the mechanoresponsive proteins, YAP and TAZ, and evaluate IGF-1R/mTOR pathway activation, a target of recent clinical trials in sarcoma. Increased nuclear YAP/TAZ was observed as stiffness in 3D was decreased. Downregulation of the IGF-1R/mTOR cascade in all 3D environments was observed. Our study highlights the complexity of mechanotransduction in 3D culture and represents a step towards controlling microenvironmental elements in in vitro cancer investigations.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fenômenos Mecânicos , Mecanotransdução Celular , Modelos Biológicos , Osteossarcoma/metabolismo , Receptor IGF Tipo 1/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Módulo de Elasticidade , Gelatina/química , Humanos , Fenótipo , Poliésteres/química , Fatores de Transcrição SOXB1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Resistência à Tração , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Microambiente Tumoral , Regulação para Cima , Proteínas de Sinalização YAPRESUMO
Solid tumors are complex three-dimensional (3D) networks of cancer and stromal cells within a dynamic extracellular matrix. Monolayer cultures fail to recapitulate the native microenvironment and therefore are poor candidates for pre-clinical drug studies and studying pathways in cancer. The tissue engineering toolkit allows us to make models that better recapitulate the 3D architecture present in tumors. Moreover, the role of the mechanical microenvironment, including matrix stiffness and shear stress from fluid flow, is known to contribute to cancer progression and drug resistance. We review recent developments in tissue engineered tumor models with a focus on the role of the biomechanical forces and propose future considerations to implement to improve physiological relevance of such models.