Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Am Water Resour Assoc ; 55(5): 1116-1129, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33551634

RESUMO

Water quality criteria are necessary to ensure protection of ecological and human health conditions, but compliance can require complex decisions. We use structured decision making to consider multiple stakeholder objectives in a water quality management process, with a case study in the Three Bays watershed on Cape Cod, Massachusetts. We set a goal to meet or exceed a nitrogen load reduction target for the watershed and four key objectives: minimizing economic costs of implementing management actions, minimizing the complexity of permitting management actions, maximizing stakeholder acceptability of the management actions, and maximizing the provision of ecosystem services (recreational opportunity, erosion and flood control, socio-cultural amenity). We used multi-objective optimization and sensitivity analysis to generate many possible solutions that implement different combinations of nitrogen-removing management actions and reflect tradeoffs between the objectives. Results show that technological advances in controlling household nitrogen sources could provide lower cost solutions and positive impacts to ecosystem services. Although this approach is demonstrated with Cape Cod data, the decision-making process is not specific to any watershed and could be easily applied elsewhere.

2.
Environ Sci Technol ; 52(1): 173-183, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-28994282

RESUMO

Land-based management has reduced nutrient discharges; however, many coastal waterbodies remain impaired. Oyster "bioextraction" of nutrients and how oyster aquaculture might complement existing management measures in urban estuaries was examined in Long Island Sound, Connecticut. Eutrophication status, nutrient removal, and ecosystem service values were estimated using eutrophication, circulation, local- and ecosystem-scale models, and an avoided-costs valuation. System-scale modeling estimated that 1.31% and 2.68% of incoming nutrients could be removed by current and expanded production, respectively. Up-scaled local-scale results were similar to system-scale results, suggesting that this up-scaling method could be useful in bodies of water without circulation models. The value of removed nitrogen was estimated using alternative management costs (e.g., wastewater treatment) as representative, showing ecosystem service values of $8.5 and $470 million per year for current and maximum expanded production, respectively. These estimates are conservative; removal by clams in Connecticut, oysters and clams in New York, and denitrification are not included. Optimistically, the calculation of oyster-associated removal from all leases in both states (5% of bottom area) plus denitrification losses showed increases to 10%-30% of annual inputs, which would be higher if clams were included. Results are specific to Long Island Sound, but the approach is transferable to other urban estuaries.


Assuntos
Ecossistema , Estuários , Animais , Aquicultura , Eutrofização , New York , Nitrogênio , Frutos do Mar
3.
Ecol Indic ; 84: 404-415, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31275064

RESUMO

Understanding the effects of environmental management strategies on society and the environment is critical for evaluating their effectiveness, but is often impeded by limited data availability. In this article, we present a method that can help scientists to support resource managers' thinking about social-ecological relationships in coupled human and natural systems. Our method aims to model qualitative cause-effect relationships between management strategies and ecosystem services, using information provided by knowledgeable participants, and the tradeoffs between strategies. Social, environmental, and cultural indicators are organized using the Driver-Pressure-State-Impact-Response, or DPSIR, framework. The relationships between indicators are evaluated using a decision tree and numerical representations of interaction strength. We use a matrix multiplication procedure to model direct and indirect interaction effects, and we provide guidelines for combining effects. Results include several data tables from which information can be visualized to understand the plausible interaction effects of implementing management strategies on ecosystem services. We illustrate our method with a water quality management case study on Cape Cod, Massachusetts.

4.
Coast Manage ; 46(4): 242-258, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31178625

RESUMO

Water quality degradation is a chronic problem which influences the resilience of a social-ecological system differently than acute disturbances, such as disease or storms. Recognizing this, we developed a tailored resilience framework that applies ecosystem service concepts to coastal social-ecological systems affected by degraded water quality. We present the framework as a mechanism for coordinating interdisciplinary research to inform long-term community planning decisions pertaining to chronic challenges in coastal systems. The resulting framework connects the ecological system to the social system via ecological production functions and ecosystem services. The social system then feeds back to the ecological system via policies and interventions to address declining water quality. We apply our resilience framework to the coastal waters and communities of Cape Cod (Barnstable County, Massachusetts, USA) which are affected by nitrogen over-enrichment. This approach allowed us to design research to improve the understanding of the effectiveness and acceptance of water quality improvement efforts and their effect on the delivery of ecosystem services. This framework is intended to be transferable to other geographical settings and more generally applied to systems exposed to chronic disturbances in order to coordinate interdisciplinary research planning and inform coastal management.

5.
Environ Monit Assess ; 161(1-4): 583-98, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19224382

RESUMO

Various measures of plants, soils, and invertebrates were described for a reference set of tidal coastal wetlands in Southern New England in order to provide a framework for assessing the condition of other similar wetlands in the region. The condition of the ten coastal wetlands with similar hydrology and geomorphology were ranked from least altered to highly altered using a combination of statistical methods and best professional judgment. Variables of plants, soils, and invertebrates were examined separately using principal component analysis to reduce the multidimensional variables to principal component scores. The first principal component scores of each set of variables (i.e., plants, soil, invertebrates) significantly (p < 0.05) correlated with both residential land use and watershed nitrogen (N) loads. Using cumulative frequency diagrams, the first principal component scores of each plant, soil, and invertebrate data set were plotted, and natural breaks and best professional judgment were used to rank the first principal component scores among the sites. We weighted all three ranked components equally and calculated an overall salt marsh condition index by summing the three ranks and then transforming the index to a 0-1 scale. The overall salt marsh condition index for the reference coastal wetland set significantly correlated with the residential land use (R = -0.87, p = 0.001) and watershed N loads (R = -0.86, p = 0.001). Overall, condition deteriorated in salt marshes and their associated discharge streams when subjected to increasing watershed residential land use and N loads.


Assuntos
Conservação dos Recursos Naturais/métodos , Áreas Alagadas , Animais , Biodiversidade , Monitoramento Ambiental , Invertebrados/fisiologia , New England , Plantas , Valores de Referência , Estados Unidos
6.
Aquat Sci ; 82(2): 1-44, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32489242

RESUMO

Our understanding of how ecosystems function has changed from an equilibria-based view to one that recognizes the dynamic, fluctuating, nonlinear nature of aquatic systems. This current understanding requires that we manage systems for resilience. In this review, we examine how resilience has been defined, measured and applied in aquatic systems, and more broadly, in the socioecological systems in which they are embedded. Our review reveals the importance of managing stressors adversely impacting aquatic system resilience, as well as understanding the environmental and climatic cycles and changes impacting aquatic resources. Aquatic resilience may be enhanced by maintaining and enhancing habitat connectivity as well as functional redundancy and physical and biological diversity. Resilience in aquatic socioecological system may be enhanced by understanding and fostering linkages between the social and ecological subsystems, promoting equity among stakeholders, and understanding how the system is impacted by factors within and outside the area of immediate interest. Management for resilience requires implementation of adaptive and preferably collaborative management. Implementation of adaptive management for resilience will require an effective monitoring framework to detect key changes in the coupled socioecological system. Research is needed to (1) develop sensitive indicators and monitoring designs, (2) disentangle complex multi-scalar interactions and feedbacks, and (3) generalize lessons learned across aquatic ecosystems and apply them in new contexts.

7.
Estuaries Coast ; 43: 23-38, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32021593

RESUMO

Eutrophication is a challenge to coastal waters around the globe. In many places, nutrient reductions from land-based sources have not been sufficient to achieve desired water quality improvements. Bivalve shellfish have shown promise as an in-water strategy to complement land-based nutrient management. A local-scale production model was used to estimate oyster (Crassostrea virginica) harvest and bioextraction of nitrogen (N) in Great Bay Piscataqua River Estuary (GBP), New Hampshire, USA, because a system-scale ecological model was not available. Farm-scale N removal results (0.072 metric tons acre-1 year-1) were up-scaled to provide a system-wide removal estimate for current (0.61 metric tons year-1), and potential removal (2.35 metric tons year-1) at maximum possible expansion of licensed aquaculture areas. Restored reef N removal was included to provide a more complete picture. Nitrogen removal through reef sequestration was ~ 3 times that of aquaculture. Estimated reef-associated denitrification, based on previously reported rates, removed 0.19 metric tons N year-1. When all oyster processes (aquaculture and reefs) were included, N removal was 0.33% and 0.54% of incoming N for current and expanded acres, respectively. An avoided cost approach, with wastewater treatment as the alternative management measure, was used to estimate the value of the N removed. The maximum economic value for aquaculture-based removal was $105,000 and $405,000 for current and expanded oyster areas, respectively. Combined aquaculture and reef restoration is suggested to maximize N reduction capacity while limiting use conflicts. Comparison of removal based on per oyster N content suggests much lower removal rates than model results, but model harvest estimates are similar to reported harvest. Though results are specific to GBP, the approach is transferable to estuaries that support bivalve aquaculture but do not have complex system-scale hydrodynamic or ecological models.

8.
Dis Aquat Organ ; 51(3): 187-201, 2002 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-12465877

RESUMO

Perkinsus marinus is a highly contagious pathogen of the eastern oyster Crassostrea virginica. Until recently, transmission studies have employed wild-type parasites isolated directly from infected oysters. Newly developed methods to propagate P. marinus in vitro have led to using cultured parasites for infection studies, but results suggest that cultured parasites are less virulent than wild-type parasites In this paper, we report results of experiments designed to quantify differences between wild-type and cultured P. marinus virulence and to test the following hypotheses: (1) in vitro-cultured parasites are less virulent than wild-type parasites; (2) virulence decreases gradually during in vitro culture; (3) virulence of in vitro cultures can be restored by in vivo passage; (4) virulence changes with culture phase. Our results demonstrate that parasites freshly isolated from infected hosts are much more virulent than those propagated in culture, indicating a potential deficiency in the culture medium used. Virulence was lost immediately in culture and, for that reason, the practice of repassing cultured cells through the host to restore virulence does not work for P. marinus. Virulence was also associated with culture phase: log-phase parasites were significantly more virulent than those obtained from lag- or stationary-phase cultures.


Assuntos
Eucariotos/patogenicidade , Ostreidae/parasitologia , Animais , Meios de Cultura , Eucariotos/isolamento & purificação , Interações Hospedeiro-Parasita , Inoculações Seriadas , Virulência
9.
Dis Aquat Organ ; 51(3): 203-16, 2002 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-12465878

RESUMO

Endoparasites must breach host barriers to establish infection and then must survive host internal defenses to cause disease. Such barriers may frustrate attempts to experimentally transmit parasites by 'natural' methods. In addition, the host's condition may affect a study's outcome. The experiments reported here examined the effect of dosing method and host metabolic condition on measures of virulence for the oyster parasite Perkinsus marinus. Oysters, Crassostrea virginica, were challenged with wild-type and cultured forms of P. marinus via feeding, shell-cavity injection, gut intubation and adductor-muscle injection. For both parasite types, adductor-muscle injections produced the heaviest infections followed by shell-cavity injection, gut intubation, and feeding. There was no difference in parasite burdens between oysters fed cultured cells by acute vs chronic dosing, and parasite loads stabilized over time, suggesting a dynamic equilibrium between invasion and elimination. P. marinus distribution among tissues of challenged oysters indicated that parasites invaded the mantle and gill, as well as the gut, which has been considered the primary portal of entry. Frequency distributions of P. marinus in oysters challenged with 3 different culture phases indicated an aggregated distribution among hosts and suggested that stationary-phase parasites were easiest for the oyster to control or eliminate and log-phase parasites were the most difficult. Host metabolic condition also affected experimental outcomes, as indicated by increased infection levels in oysters undergoing spawning and/or exposed to low oxygen stress.


Assuntos
Eucariotos/crescimento & desenvolvimento , Eucariotos/patogenicidade , Ostreidae/parasitologia , Animais , Nível de Saúde , Interações Hospedeiro-Parasita , Ostreidae/imunologia , Dinâmica Populacional , Virulência
10.
Dis Aquat Organ ; 51(3): 217-25, 2002 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-12465879

RESUMO

Perkinsus marinus, a pathogen of the eastern oyster Crassostrea virginica, is transmitted directly among oysters. Previous studies found viable P. marinus parasites in the feces and pseudofeces of oysters within hours of injection with parasites, suggesting that the parasite may be voided from live oysters and subsequently dispersed in the water column. The experiments described here were designed to quantify P. marinus shed in the feces and pseudofeces of experimentally infected oysters. The results indicated that parasites were shed in 2 phases. A 'decreasing' phase occurred within 2 wk of challenge and before net parasite proliferation began in the host. An 'increasing' phase occurred after P. marinus had begun replicating. The quantity of P. marinus recovered in the feces and pseudofeces of exposed oysters was only about 5 % of the dose administered. In vitro-cultured P. marinus were eliminated at a greater rate than wild-type P. marinus and the fraction discharged was not associated with culture phase. Oysters that were continuously dosed with P. marinus in their food gradually lost the ability to discard the parasite in pseudofeces. The quantity of P. marinus shed in feces of infected oysters was correlated with both the P. marinus body burden and subsequent survival time, suggesting that noninvasive fecal counts could predict infection intensity and survival. The results indicate that in an epizootic, shedding of P. marinus via feces is relatively small compared to the potential number released by cadavers of heavily infected oysters, but that fecal discharge may be important in transmission before infections become lethal.


Assuntos
Eucariotos/crescimento & desenvolvimento , Fezes/parasitologia , Ostreidae/parasitologia , Animais , Eucariotos/patogenicidade , Eucariotos/fisiologia , Interações Hospedeiro-Parasita , Técnicas In Vitro , Densidade Demográfica , Fatores de Tempo , Virulência
11.
J Environ Qual ; 33(3): 1144-51, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15224954

RESUMO

Coastal salt marshes are a buffer between the uplands and adjacent coastal waters in New England (USA). With increasing N loads from developed watersheds, salt marshes could play an important role in the water quality maintenance of coastal waters. In this study we examined seasonal relationships between denitrification enzyme activity (DEA) in salt marshes of Narragansett Bay, Rhode Island, and watershed N loadings, land use, and terrestrial hydric soils. In a manipulative experiment, the effect of nutrient enrichment on DEA was examined in a saltmeadow cordgrass [Spartina patens (Aiton) Muhl.] marsh. In the high marsh, DEA significantly (p < 0.05) increased with watershed N loadings and decreased with the percent of hydric soils in a 200-m terrestrial buffer. In the low marsh, we found no significant relationships between DEA and watershed N loadings, residential land development, or terrestrial hydric soils. In the manipulation experiment, we measured increased DEA in N-amended treatments, but no effect in the P-amended treatments. The positive relationships between N loading and high marsh DEA support the hypothesis that salt marshes may be important buffers between the terrestrial landscape and estuaries, preventing the movement of land-derived N into coastal waters. The negative relationships between marsh DEA and the percent of hydric soils in the adjacent watershed illustrate the importance of natural buffers within the terrestrial landscape. Denitrification enzyme activity appears to be a useful index for comparing relative N exposure and the potential denitrification activity of coastal salt marshes.


Assuntos
Bactérias/enzimologia , Ecossistema , Nitrogênio/metabolismo , Poluentes da Água/metabolismo , Monitoramento Ambiental , New England , Poaceae , Solo , Movimentos da Água , Poluição da Água/prevenção & controle
12.
Environ Monit Assess ; 139(1-3): 119-36, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17564795

RESUMO

Watershed land use in suburban areas can affect stream biota through degradation of instream habitat, water quality, and riparian vegetation. By monitoring stream biotic communities in various geographic regions, we can better understand and conserve our watershed ecosystems. The objective of this study was to examine the relationship between watershed land use and the integrity of benthic invertebrate communities in eight streams that were assessed over a 3-year period (2001-2003). Sites were selected from coastal Rhode Island watersheds along a residential land-use gradient (4-59%). Using the rapid bioassessment protocol, we collected biological, physicochemical, habitat, and nutrient data from wadeable stream reaches and compared metrics of structure and integrity. Principal component analyses showed significant negative correlation of indicators for stream physicochemical, habitat, and instream biodiversity with increasing residential land use (RLU) in the watershed. The physicochemical variables that were most responsive to percent RLU were conductivity, instream habitat, nitrate, and dissolved inorganic nitrogen (DIN). The positive correlation of DIN with percent RLU indicated an anthropogenic source of pollution affecting the streams. The biotic composition of the streams shifted from sensitive to insensitive taxa as percent RLU increased; the most responsive biological variables were percent Ephemeroptera, percent Scrapers, percent Insects, and the Hilsenhoff biotic index. These data show the importance of land management and conservation at the watershed scale to sustaining the biotic integrity of coastal stream ecosystems.


Assuntos
Ecossistema , Água Doce , Rhode Island
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA