Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS Pathog ; 19(3): e1011281, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37000891

RESUMO

During the blood stage of a malaria infection, malaria parasites export both soluble and membrane proteins into the erythrocytes in which they reside. Exported proteins are trafficked via the parasite endoplasmic reticulum and secretory pathway, before being exported across the parasitophorous vacuole membrane into the erythrocyte. Transport across the parasitophorous vacuole membrane requires protein unfolding, and in the case of membrane proteins, extraction from the parasite plasma membrane. We show that trafficking of the exported Plasmodium protein, Pf332, differs from that of canonical eukaryotic soluble-secreted and transmembrane proteins. Pf332 is initially ER-targeted by an internal hydrophobic sequence that unlike a signal peptide, is not proteolytically removed, and unlike a transmembrane segment, does not span the ER membrane. Rather, both termini of the hydrophobic sequence enter the ER lumen and the ER-lumenal species is a productive intermediate for protein export. Furthermore, we show in intact cells, that two other exported membrane proteins, SBP1 and MAHRP2, assume a lumenal topology within the parasite secretory pathway. Although the addition of a C-terminal ER-retention sequence, recognised by the lumenal domain of the KDEL receptor, does not completely block export of SBP1 and MAHRP2, it does enhance their retention in the parasite ER. This indicates that a sub-population of each protein adopts an ER-lumenal state that is an intermediate in the export process. Overall, this suggests that although many exported proteins traverse the parasite secretory pathway as typical soluble or membrane proteins, some exported proteins that are ER-targeted by a transmembrane segment-like, internal, non-cleaved hydrophobic segment, do not integrate into the ER membrane, and form an ER-lumenal species that is a productive export intermediate. This represents a novel means, not seen in typical membrane proteins found in model systems, by which exported transmembrane-like proteins can be targeted and trafficked within the lumen of the secretory pathway.


Assuntos
Malária , Plasmodium , Humanos , Transporte Proteico , Proteínas de Protozoários/metabolismo , Plasmodium/metabolismo , Retículo Endoplasmático/metabolismo , Eritrócitos/parasitologia , Malária/metabolismo , Proteínas de Membrana/metabolismo , Plasmodium falciparum/metabolismo
2.
iScience ; 27(2): 109017, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38333705

RESUMO

Nε-lysine acetylation is a common posttranslational modification observed in Escherichia coli. In the present study, integrative analysis of the proteome and acetylome was performed using label-free quantitative mass spectrometry to analyze the relative influence of three factors affecting growth. The results revealed differences in the proteome, mainly owing to the type of culture medium used (defined or complex). In the acetylome, 7482 unique acetylation sites were identified. Acetylation is directly related to the abundance of proteins, and the level of acetylation in each type of culture is associated with extracellular acetate concentration. Furthermore, most acetylated lysines in the exponential phase remained in the stationary phase without dynamic turnover. Interestingly, unique acetylation sites were detected in proteins whose presence or abundance was linked to the type of culture medium. Finally, the biological function of the acetylation changes was demonstrated for three central metabolic proteins (GapA, Mdh, and AceA).

3.
Andrology ; 11(7): 1460-1471, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36815564

RESUMO

BACKGROUND: Previously, we reported that cysteine-rich secretory protein 2 is involved in high molecular weight complexes in boar spermatozoa. These cysteine-rich secretory protein 2protein complexes are formed at the last phase of sperm formation in the testis and play a role in sperm shaping and functioning. OBJECTIVES: This study aimed to identify cysteine-rich secretory protein 2 interacting partners. These binding partner interactions were investigated under different conditions, namely, non-capacitating conditions, after the induction of in vitro sperm capacitation and subsequently during an ionophore A23187-induced acrosome reaction. MATERIALS AND METHODS: The incubated pig sperm samples were subjected to protein extraction. Extracted proteins were subjected to blue native gel electrophoresis and native immunoblots. Immunoreactive gel bands were excised and subjected to liquid chromatography-mass spectrometry (LC-MS) analysis for protein identification. Protein extracts were also subjected to CRISP2 immunoprecipitation and analyzed by LC-MS for protein identification. The most prominent cystein-rich secretory protein 2 interacting proteins that appeared in both independent LC-MS analyses were studied with a functional in situ proximity interaction assay to validate their property to interact with cystein-rich secretory protein 2 in pig sperm. RESULTS: Blue native gel electrophoresis and native immunoblots revealed that cystein-rich secretory protein 2 was present within a ∼150 kDa protein complex under all three conditions. Interrogation of cystein-rich secretory-protein 2-immunoreactive bands from blue native gels as well as cystein-rich secretory protein 2 immunoprecipitated products using mass spectrometry consistently revealed that, beyond cystein-rich secretory protein 2, acrosin and acrosin binding protein were among the most abundant interacting proteins and did interact under all three conditions. Co-immunoprecipitation and immunoblotting indicated that cystein-rich secretory protein 2 interacted with pro-acrosin (∼53 kDa) and Aacrosin binding protein under all three conditions and additionally to acrosin (∼35 kDa) after capacitation and the acrosome reaction. The colocalization of these interacting proteins with cystein-rich secretory protein 2 was assessed via in situ proximity ligation assays. The colocalization signal of cystein-rich secretory protein 2 and acrosin in the acrosome seemed dispersed after capacitation but was consistently present in the sperm tail under all conditions. The fluorescent foci of cystein-rich secretory protein 2 and acrsin binding protein colocalization appeared to be redistributed within the sperm head from the anterior acrosome to the post-acrosomal sheath region upon capacitation. DISCUSSION AND CONCLUSION: These results suggest that CRISP2 may act as a scaffold for protein complex formation and dissociation to ensure the correct positioning of proteins required for the acrosome reaction and zona pellucida penetration.


Assuntos
Acrosina , Cisteína , Masculino , Animais , Suínos , Acrosina/metabolismo , Cisteína/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Proteínas/metabolismo , Acrossomo , Capacitação Espermática , Ligação Proteica
4.
Front Cell Dev Biol ; 10: 836208, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252197

RESUMO

The perinuclear theca (PT) is a highly condensed, largely insoluble protein structure that surrounds the nucleus of eutherian spermatozoa. Recent reports have indicated that the PT unexpectedly houses several somatic proteins, such as core histones, which may be important post-fertilization during re-modelling of the male pronucleus, yet little is known regarding the overall proteomic composition of the PT. Here, we report the first in depth, label-free proteomic characterization of the PT of boar spermatozoa following the implementation of a long-established subcellular fractionation protocol designed to increase the detection of low abundance proteins. A total of 1,802 proteins were identified, a result that represents unparalleled depth of coverage for the boar sperm proteome and exceeds the entire annotated proteome of the Sus scrofa species so far. In the PT structure itself, we identified 813 proteins and confirmed the presence of previously characterized PT proteins including the core histones H2A, H2B, H3 and H4, as well as Ras-related protein Rab-2A (RAB2A) and Rab-2B (RAB2B) amongst other RAB proteins. In addition to these previously characterized PT proteins, our data revealed that the PT is replete in proteins critical for sperm-egg fusion and egg activation, including: Izumo family members 1-4 (IZUMO1-4) and phosphoinositide specific phospholipase ζ (PLCZ1). Through Ingenuity Pathway Analysis, we found surprising enrichment of endoplasmic reticulum (ER) proteins and the ER-stress response in the PT. This is particularly intriguing as it is currently held that the ER structure is lost during testicular sperm maturation. Using the String and Cytoscape tools to visualize protein-protein interactions revealed an intricate network of PT protein complexes, including numerous proteasome subunits. Collectively, these data suggest that the PT may be a unique site of cellular homeostasis that houses an abundance of protein degradation machinery. This fits with previous observations that the PT structure dissociates first within the oocyte post-fertilization. It remains to be explored whether proteasome subunits within the PT actively assist in the protein degradation of paternal cell structures post-fertilization and how aberrations in PT protein content may delay embryonic development.

5.
Redox Biol ; 55: 102403, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35863266

RESUMO

Defects in Coenzyme Q (CoQ) metabolism have been associated with primary mitochondrial disorders, neurodegenerative diseases and metabolic conditions. The consequences of CoQ deficiency have not been fully addressed, and effective treatment remains challenging. Here, we use mice with primary CoQ deficiency (Coq9R239X), and we demonstrate that CoQ deficiency profoundly alters the Q-junction, leading to extensive changes in the mitochondrial proteome and metabolism in the kidneys and, to a lesser extent, in the brain. CoQ deficiency also induces reactive gliosis, which mediates a neuroinflammatory response, both of which lead to an encephalopathic phenotype. Importantly, treatment with either vanillic acid (VA) or ß-resorcylic acid (ß-RA), two analogs of the natural precursor for CoQ biosynthesis, partially restores CoQ metabolism, particularly in the kidneys, and induces profound normalization of the mitochondrial proteome and metabolism, ultimately leading to reductions in gliosis, neuroinflammation and spongiosis and, consequently, reversing the phenotype. Together, these results provide key mechanistic insights into defects in CoQ metabolism and identify potential disease biomarkers. Furthermore, our findings clearly indicate that the use of analogs of the CoQ biosynthetic precursor is a promising alternative therapy for primary CoQ deficiency and has potential for use in the treatment of more common neurodegenerative and metabolic diseases that are associated with secondary CoQ deficiency.

6.
Sci Adv ; 8(3): eabh2635, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35061544

RESUMO

Cancer cells voraciously consume nutrients to support their growth, exposing metabolic vulnerabilities that can be therapeutically exploited. Here, we show in hepatocellular carcinoma (HCC) cells, xenografts, and patient-derived organoids that fasting improves sorafenib efficacy and acts synergistically to sensitize sorafenib-resistant HCC. Mechanistically, sorafenib acts noncanonically as an inhibitor of mitochondrial respiration, causing resistant cells to depend on glycolysis for survival. Fasting, through reduction in glucose and impeded AKT/mTOR signaling, prevents this Warburg shift. Regulating glucose transporter and proapoptotic protein expression, p53 is necessary and sufficient for the sorafenib-sensitizing effect of fasting. p53 is also crucial for fasting-mediated improvement of sorafenib efficacy in an orthotopic HCC mouse model. Together, our data suggest fasting and sorafenib as rational combination therapy for HCC with intact p53 signaling. As HCC therapy is currently severely limited by resistance, these results should instigate clinical studies aimed at improving therapy response in advanced-stage HCC.

7.
Nanoscale Adv ; 3(13): 3824-3834, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36133013

RESUMO

In the past few years, characterization of the protein corona (PC) that forms around liposomal systems has gained increasing interest for the development of novel therapeutic and diagnostic technologies. At the crossroads of fast-moving research fields, the interdisciplinarity of protein corona investigations poses challenges for experimental design and reporting. Isolation of liposome-protein complexes from biological fluids has been identified as a fundamental step of the entire workflow of PC characterization but exact specifications for conditions to optimize pelleting remain elusive. In the present work, key factors affecting precipitation of liposome-protein complexes by centrifugation, including time of centrifugation, total sample volume, lipid : protein ratio and contamination from biological NPs were comprehensively evaluated. Here we show that the total amount of isolated liposome-protein complexes and the extent of contamination from biological NPs may vary with influence factors. Our results provide protein corona researchers with precise indications to separate liposome-protein complexes from protein-rich fluids and include proper controls, thus they are anticipated to catalyze improved consistency of data mining and computational modelling of protein corona composition.

9.
Nat Commun ; 10(1): 3686, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31417080

RESUMO

In vivo liposomes, like other types of nanoparticles, acquire a totally new 'biological identity' due to the formation of a biomolecular coating known as the protein corona that depends on and modifies the liposomes' synthetic identity. The liposome-protein corona is a dynamic interface that regulates the interaction of liposomes with the physiological environment. Here we show that the biological identity of liposomes is clearly linked to their sequestration from peripheral blood mononuclear cells (PBMCs) of healthy donors that ultimately leads to removal from the bloodstream. Pre-coating liposomes with an artificial corona made of human plasma proteins drastically reduces capture by circulating leukocytes in whole blood and may be an effective strategy to enable prolonged circulation in vivo. We conclude with a critical assessment of the key concepts of liposome technology that need to be reviewed for its definitive clinical translation.


Assuntos
Leucócitos Mononucleares/imunologia , Lipossomos/sangue , Lipossomos/imunologia , Coroa de Proteína/imunologia , Adsorção , Proteínas Sanguíneas/imunologia , Proteínas Sanguíneas/metabolismo , Cromatografia Líquida de Alta Pressão , Citometria de Fluxo , Humanos , Leucócitos/imunologia , Lipossomos/metabolismo , Lipossomos/ultraestrutura , Microscopia Eletrônica de Transmissão , Coroa de Proteína/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Células THP-1
10.
Methods Mol Biol ; 1550: 69-82, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28188524

RESUMO

The bottom-up proteomic analysis of cell line and tissue samples to a depth > 10,000 proteins still represents a considerable challenge because of the sheer number of peptides generated by proteolytic digestions and the high dynamic range of protein expression. As a result, comprehensive protein coverage requires multidimensional peptide separation. Recently, off-line hydrophilic strong cation exchange (hSAX) chromatography has proven its merits for high resolution separation of peptides due to its high degree of orthogonality to reversed-phase liquid chromatography. Here we describe the use of hSAX for the deep analysis of tissue proteomes. The protocol includes optimized sample preparation steps (lysis with the aid of mechanical disruption, one-step disulfide bridge reduction and alkylation), setup and operation of hSAX columns and gradients, desalting of hSAX fractions prior to LC-MS/MS analysis, and suggestions for the choice of data acquisition parameters and data analysis using MaxQuant. Application of the protocol to the fractionation of 300 µg human brain tissue digest led to the identification of more than 100,000 unique peptide sequences representing over 10,195 proteins and 9,500 genes in 3 days of measurement time on a Q Exactive Plus mass spectrometer.


Assuntos
Fracionamento Químico/métodos , Cromatografia por Troca Iônica/métodos , Proteoma , Proteômica/métodos , Cromatografia Líquida , Humanos , Interações Hidrofóbicas e Hidrofílicas , Software , Estatística como Assunto , Espectrometria de Massas em Tandem
11.
Toxins (Basel) ; 9(4)2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28430148

RESUMO

Mycotoxins can contaminate various food commodities, including cereals. Moreover, mycotoxins of different classes can co-contaminate food, increasing human health risk. Several analytical methods have been published in the literature dealing with mycotoxins determination in cereals. Nevertheless, in the present work, the aim was to propose an easy and effective system for the extraction of six of the main mycotoxins from corn meal and durum wheat flour, i.e., the main four aflatoxins, ochratoxin A, and the mycoestrogen zearalenone. The developed method exploited magnetic solid phase extraction (SPE), a technique that is attracting an increasing interest as an alternative to classical SPE. Therefore, the use of magnetic graphitized carbon black as a suitable extracting material was tested. The same magnetic material proved to be effective in the extraction of mycoestrogens from milk, but has never been applied to complex matrices as cereals. Ultra high-performance liquid chromatography tandem mass spectrometry was used for detection. Recoveries were >60% in both cereals, even if the matrix effects were not negligible. The limits of quantification of the method results were comparable to those obtained by other two magnetic SPE-based methods applied to cereals, which were limited to one or two mycotoxins, whereas in this work the investigated mycotoxins belonged to three different chemical classes.


Assuntos
Farinha/análise , Contaminação de Alimentos/análise , Micotoxinas/análise , Triticum , Zea mays , Cromatografia Líquida , Limite de Detecção , Extração em Fase Sólida , Espectrometria de Massas em Tandem
12.
Colloids Surf B Biointerfaces ; 153: 263-271, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28273493

RESUMO

The fast growing use of nanoparticles (NPs) in biotechnology and biomedicine raises concerns about human health and the environment. When introduced in physiological milieus, NPs adsorb biomolecules (especially proteins) forming the so-called protein corona (PC). As it is the PC that mostly interacts with biological systems, it represents a major element of the NPs' biological identity with impact on nanotoxicology, nanosafety and targeted delivery of nanomedicines. To date, NP-protein interactions have been largely investigated in vitro, but this condition is far from mimicking the dynamic nature of physiological environments. Here we investigate the effect of shear stress on PC by exposing lipid NPs with different surface chemistry (either unmodified and PEGylated) to circulating fetal bovine serum (FBS). PC formed upon in vitro incubation was used as a reference. We demonstrate that PC is significantly influenced by exposure to dynamic flow and that changes in PC composition are dependent on both exposure time and NP's surface chemistry. Notably, alterations induced by dynamic flow affected cellular uptake of lipid NPs in both human cervical cancer (HeLa) and human breast adenocarcinoma (MCF7) cell lines.


Assuntos
Citometria de Fluxo , Nanopartículas/química , Nanopartículas/metabolismo , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Animais , Bovinos , Células HeLa , Humanos , Células MCF-7 , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA