Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(10): 6866-6879, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38437011

RESUMO

Activity descriptors are a powerful tool for the design of catalysts that can efficiently utilize H2 with minimal energy losses. In this study, we develop the use of hydricity and H- self-exchange rates as thermodynamic and kinetic descriptors for the hydrogenation of ketones by molecular catalysts. Two complexes with known hydricity, HRh(dmpe)2 and HCo(dmpe)2, were investigated for the catalytic hydrogenation of ketones under mild conditions (1.5 atm and 25 °C). The rhodium catalyst proved to be an efficient catalyst for a wide range of ketones, whereas the cobalt catalyst could only hydrogenate electron-deficient ketones. Using a combination of experiment and electronic structure theory, thermodynamic hydricity values were established for 46 alkoxide/ketone pairs in both acetonitrile and tetrahydrofuran solvents. Through comparison of the hydricities of the catalysts and substrates, it was determined that catalysis was observed only for catalyst/ketone pairs with an exergonic H- transfer step. Mechanistic studies revealed that H- transfer was the rate-limiting step for catalysis, allowing for the experimental and computation construction of linear free-energy relationships (LFERs) for H- transfer. Further analysis revealed that the LFERs could be reproduced using Marcus theory, in which the H- self-exchange rates for the HRh/Rh+ and ketone/alkoxide pairs were used to predict the experimentally measured catalytic barriers within 2 kcal mol-1. These studies significantly expand the scope of catalytic reactions that can be analyzed with a thermodynamic hydricity descriptor and firmly establish Marcus theory as a valid approach to develop kinetic descriptors for designing catalysts for H- transfer reactions.

2.
Inorg Chem ; 62(23): 8789-8793, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37227222

RESUMO

Here, we investigate the stereoelectronic requirements of a family of Fe/Co6Se8 molecular clusters to achieve a Goldilocks regime of substrate affinity for the catalytic coupling of tosyl azide and tert-butyl isocyanide. The reactivity of a catalytically competent iron-nitrenoid intermediate, observed in situ, is explored toward nitrene transfer and hydrogen-atom abstraction. The dual role of isocyanide, which, on the one hand, prevents catalyst degradation but, in large amounts, slows down reactivity, is exposed. The impact of distal changes (the number of neighboring active sites and the identity of supporting ligands) on the substrate affinity, electronic properties, and catalytic activity is investigated. Overall, the study reveals that the dynamic, push-pull interactions between the substrate (tBuNC), active site (Fe), and support (Co6Se8) create a regime where increased substrate activation occurs with facile dissociation.

3.
Inorg Chem ; 62(26): 10497-10503, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37318196

RESUMO

This study provides insights into the electronic structure of an atomically precise Fe/Co6Se8 cluster and the extent of redox cooperativity between the Fe active site and the noninnocent Co6Se8 support. Chemical oxidation studies enable the isolation of two types of oxidized Fe/Co6Se8 clusters, in which the nature of the counterion (I- or OTf-) significantly impacts the structural interactions between Fe and the Co6Se8 unit. Experimental characterization by single crystal X-ray diffraction, 57Fe Mössbauer spectroscopy, and 31P{1H} NMR spectroscopy is complemented by computational analysis. In aggregate, the study reveals that upon oxidation, the charge is shared between the Fe edge site and the Co6Se8 core.

4.
J Am Chem Soc ; 144(40): 18459-18469, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36170652

RESUMO

This study provides atomistic insights into the interface between a single-site catalyst and a transition metal chalcogenide support and reveals that peak catalytic activity occurs when edge/support redox cooperativity is maximized. A molecular platform MCo6Se8(PEt3)4(L)2 (1-M, M = Cr, Mn, Fe, Co, Cu, and Zn) was designed in which the active site (M)/support (Co6Se8) interactions are interrogated by systematically probing the electronic and structural changes that occur as the identity of the metal varies. All 3d transition metal 1-M clusters display remarkable catalytic activity for coupling tosyl azide and tert-butyl isocyanide, with Mn and Co derivatives showing the fastest turnover in the series. Structural, electronic, and magnetic characterization of the clusters was performed using single crystal X-ray diffraction, 1H and 31P nuclear magnetic resonance spectroscopy, electronic absorption spectroscopy, cyclic voltammetry, and computational methods. Distinct metal/support redox regimes can be accessed in 1-M based on the energy of the edge metal's frontier orbitals with respect to those of the cluster support. As the degree of electronic interaction between the edge and the support increases, a cooperative regime is reached wherein the support can deliver electrons to the catalytic site, increasing the reactivity of key metal-nitrenoid intermediates.


Assuntos
Azidas , Elementos de Transição , Ligantes , Espectroscopia de Ressonância Magnética , Metais/química , Modelos Moleculares , Elementos de Transição/química
5.
J Am Chem Soc ; 141(50): 19605-19610, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31770487

RESUMO

Atomically defined interfaces that maximize the density of active sites and harness the electronic metal-support interaction are desirable to facilitate challenging multielectron transformations, but their synthesis remains a considerable challenge. We report the rational synthesis of the atomically defined metal chalcogenide nanopropeller Fe3Co6Se8L6 (L = Ph2PNTol) featuring three Fe edge sites, and its ensuing catalytic activity for carbodiimide formation. The complex interaction between the Fe edges and Co6Se8 support, including the interplay between oxidation state, substrate coordination, and metal-support interaction, is probed in detail using chemical and electrochemical methods, extensive single crystal X-ray diffraction, and electronic absorption and Mössbauer spectroscopy.

6.
J Am Chem Soc ; 138(28): 8968-75, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27340837

RESUMO

A new strategy for the catalytic synthesis of substituted 1H-indenes via metalloradical activation of o-cinnamyl N-tosyl hydrazones is presented, taking advantage of the intrinsic reactivity of a Co(III) carbene radical intermediate. The reaction uses readily available starting materials and is operationally simple, thus representing a practical method for the construction of functionalized 1H-indene derivatives. The cheap and easy to prepare low spin cobalt(II) complex [Co(II)(MeTAA)] (MeTAA = tetramethyltetraaza[14]annulene) proved to be the most active catalyst among those investigated, which demonstrates catalytic carbene radical reactivity for a nonporphyrin cobalt(II) complex, and for the first time catalytic activity of [Co(II)(MeTAA)] in general. The methodology has been successfully applied to a broad range of substrates, producing 1H-indenes in good to excellent yields. The metallo-radical catalyzed indene synthesis in this paper represents a unique example of a net (formal) intramolecular carbene insertion reaction into a vinylic C(sp(2))-H bond, made possible by a controlled radical ring-closure process of the carbene radical intermediate involved. The mechanism was investigated computationally, and the results were confirmed by a series of supporting experimental reactions. Density functional theory calculations reveal a stepwise process involving activation of the diazo compound leading to formation of a Co(III)-carbene radical, followed by radical ring-closure to produce an indanyl/benzyl radical intermediate. Subsequent indene product elimination involving a 1,2-hydrogen transfer step regenerates the catalyst. Trapping experiments using 2,2,6,6-tetra-methylpiperidine-1-oxyl (TEMPO) radical or dibenzoylperoxide (DBPO) confirm the involvement of cobalt(III) carbene radical intermediates. Electron paramagnetic resonance spectroscopic spin-trapping experiments using phenyl N-tert-butylnitrone (PBN) reveal the radical nature of the reaction.

7.
Chemistry ; 19(39): 12953-8, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-24038393

RESUMO

One-pot radicals: Cobalt(III)-carbene radicals, generated by metallo-radical activation of diazo compounds and N-tosylhydrazone sodium salts with cobalt(II) complexes of porphyrins, readily undergo radical addition to carbon monoxide, allowing the catalytic production of ketenes. These ketenes subsequently react with various amines, alcohols and imines in one-pot tandem transformations to produce differently substituted amides, esters and ß-lactams in good isolated yields.


Assuntos
Compostos Azo/química , Cobalto/química , Etilenos/química , Cetonas/química , Metaloporfirinas/química , Metano/análogos & derivados , Porfirinas/química , Aminas/química , Catálise , Ésteres , Iminas/química , Metaloporfirinas/síntese química , Metano/química , Estrutura Molecular , Porfirinas/síntese química , beta-Lactamas/química
8.
ChemCatChem ; 9(8): 1413-1421, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28529668

RESUMO

A new protocol for the catalytic synthesis of cyclopropanes using electron-deficient alkenes is presented, which is catalysed by a series of affordable, easy to synthesise and highly active substituted cobalt(II) tetraaza[14]annulenes. These catalysts are compatible with the use of sodium tosylhydrazone salts as precursors to diazo compounds in one-pot catalytic transformations to afford the desired cyclopropanes in almost quantitative yields. The reaction takes advantage of the metalloradical character of the Co complexes to activate the diazo compounds. The reaction is practical and fast, and proceeds from readily available starting materials. It does not require the slow addition of diazo reagents or tosylhydrazone salts or heating and tolerates many solvents, which include protic ones such as MeOH. The CoII complexes derived from the tetramethyltetraaza[14]annulene ligand are easier to prepare than cobalt(II) porphyrins and present a similar catalytic carbene radical reactivity but are more active. The reaction proceeds at 20 °C in a matter of minutes and even at -78 °C in a few hours. The catalytic system is robust and can operate with either the alkene or the diazo reagent as the limiting reagent, which inhibits the dimerisation of diazo compounds totally. The protocol has been applied to synthesise a variety of substituted cyclopropanes. High yields and selectivities were achieved for various substrates with an intrinsic preference for trans cyclopropanes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA