Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RSC Pharm ; 1(1): 68-79, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646595

RESUMO

The acute kidney injury (AKI) and dose-limiting nephrotoxicity, which occurs in 20-60% of patients following systemic administration of colistin, represents a challenge in the effective treatment of multi-drug resistant Gram-negative infections. To reduce clinical toxicity of colistin and improve targeting to infected/inflamed tissues, we previously developed dextrin-colistin conjugates, whereby colistin is designed to be released by amylase-triggered degradation of dextrin in infected and inflamed tissues, after passive targeting by the enhanced permeability and retention effect. Whilst it was evident in vitro that polymer conjugation can reduce toxicity and prolong plasma half-life, without significant reduction in antimicrobial activity of colistin, it was unclear how dextrin conjugation would alter cellular uptake and localisation of colistin in renal tubular cells in vivo. We discovered that dextrin conjugation effectively reduced colistin's toxicity towards human kidney proximal tubular epithelial cells (HK-2) in vitro, which was mirrored by significantly less cellular uptake of Oregon Green (OG)-labelled dextrin-colistin conjugate, when compared to colistin. Using live-cell confocal imaging, we revealed localisation of both, free and dextrin-bound colistin in endolysosome compartments of HK-2 and NRK-52E cells. Using a murine AKI model, we demonstrated dextrin-colistin conjugation dramatically diminishes both proximal tubular injury and renal accumulation of colistin. These findings reveal new insight into the mechanism by which dextrin conjugation can overcome colistin's renal toxicity and show the potential of polymer conjugation to improve the side effect profile of nephrotoxic drugs.

2.
Sci Rep ; 11(1): 10600, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011987

RESUMO

Attachment of polysaccharide carriers is increasingly being used to achieve precision delivery and improved effectiveness of protein and peptide drugs. Although it is clear that their clinical effectiveness relies on the purity and integrity of the conjugate in storage, as well as following administration, instability of polysaccharide-based conjugates can reduce the protective efficacy of the polymer, which may adversely affect the bioactive's potency. As a model, these studies used dextrin-colistin conjugates, with varying degrees of polymer modification (1, 2.5 and 7.5 mol% succinoylation) to assess the effect of storage temperature (- 20, 4, 21 and 37 °C) and duration (up to 12 months) on saccharide and colistin release and antimicrobial activity. Estimation of the proportion of saccharide release (by comparison of area under the curve from size exclusion chromatograms) was more pronounced at higher temperatures (up to 3 and 35% at - 20 °C and 37 °C, respectively after 12 months), however, repeated freeze-thaw did not produce any measurable release of saccharides, while addition of amylase (20, 100, 500 IU/L) caused rapid release of saccharides (> 70% total within 24 h). At all temperatures, conjugates containing the lowest degree of succinoylation released the highest proportion of free colistin, which increased with storage temperature, however no trend in saccharide release was observed. Despite the clear physical effects of prolonged storage, antimicrobial activity of all samples was only altered after storage at 37 °C for 12 months (> threefold decreased activity). These results demonstrate significant release of saccharides from dextrin-colistin conjugates during prolonged storage in buffered solution, especially at elevated temperature, which, in most cases, did not affect antimicrobial activity. These findings provide vital information about the structure-activity relationship of dextrin-colistin conjugates, prior to full-scale commercial development, which can subsequently be applied to other polysaccharide-protein and -peptide conjugates.


Assuntos
Fenômenos Químicos , Colistina/química , Dextrinas/química , Temperatura , Amilases/metabolismo , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Refratometria , Açúcares/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA