Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 496(7443): 74-7, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23535594

RESUMO

Dislocations and their interactions strongly influence many material properties, ranging from the strength of metals and alloys to the efficiency of light-emitting diodes and laser diodes. Several experimental methods can be used to visualize dislocations. Transmission electron microscopy (TEM) has long been used to image dislocations in materials, and high-resolution electron microscopy can reveal dislocation core structures in high detail, particularly in annular dark-field mode. A TEM image, however, represents a two-dimensional projection of a three-dimensional (3D) object (although stereo TEM provides limited information about 3D dislocations). X-ray topography can image dislocations in three dimensions, but with reduced resolution. Using weak-beam dark-field TEM and scanning TEM, electron tomography has been used to image 3D dislocations at a resolution of about five nanometres (refs 15, 16). Atom probe tomography can offer higher-resolution 3D characterization of dislocations, but requires needle-shaped samples and can detect only about 60 per cent of the atoms in a sample. Here we report 3D imaging of dislocations in materials at atomic resolution by electron tomography. By applying 3D Fourier filtering together with equal-slope tomographic reconstruction, we observe nearly all the atoms in a multiply twinned platinum nanoparticle. We observed atomic steps at 3D twin boundaries and imaged the 3D core structure of edge and screw dislocations at atomic resolution. These dislocations and the atomic steps at the twin boundaries, which appear to be stress-relief mechanisms, are not visible in conventional two-dimensional projections. The ability to image 3D disordered structures such as dislocations at atomic resolution is expected to find applications in materials science, nanoscience, solid-state physics and chemistry.

2.
Nano Lett ; 14(7): 3887-94, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24873775

RESUMO

Structural defects/grain boundaries in metallic materials can exhibit unusual chemical reactivity and play important roles in catalysis. Bulk polycrystalline materials possess many structural defects, which is, however, usually inaccessible to solution reactants and hardly useful for practical catalytic reactions. Typical metallic nanocrystals usually exhibit well-defined crystalline structure with few defects/grain boundaries. Here, we report the design of ultrafine wavy nanowires (WNWs) with a high density of accessible structural defects/grain boundaries as highly active catalytic hot spots. We show that rhodium WNWs can be readily synthesized with controllable number of structural defects and demonstrate the number of structural defects can fundamentally determine their catalytic activity in selective oxidation of benzyl alcohol by O2, with the catalytic activity increasing with the number of structural defects. X-ray photoelectron spectroscopy (XPS) and cyclic voltammograms (CVs) studies demonstrate that the structural defects can significantly alter the chemical state of the Rh WNWs to modulate their catalytic activity. Lastly, our systematic studies further demonstrate that the concept of defect engineering in WNWs for improved catalytic performance is general and can be readily extended to other similar systems, including palladium and iridium WNWs.

3.
Nature ; 503(7476): E1-2, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24256806
4.
Chem Soc Rev ; 42(7): 2512-27, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23079759

RESUMO

Biomolecules capable of fabricating complex nanomaterials with required functions in nature have been exploited to artificially control nanomaterial synthesis in all aspects. This tutorial review provides an overview of recent efforts in biomimetic synthesis and the relevant mechanistic studies on biomolecular specificities toward material surfaces. It starts with a discussion of the state-of-the-art progress in colloidal nanocrystal synthesis, wherein the importance of the interfacial control over nanoscale building blocks discloses the potential of exploiting biomolecular recognition properties in nanostructure synthesis. Continued discussions will review the progress in biomimetic syntheses of different classes of nanoscale materials. In vitro biomimetic syntheses with both biomolecules isolated from organisms and material-specific peptide sequences selected from combinatorial molecular evolution processes will be demonstrated. The final part of the review presents the recent research efforts and advances in understanding biomolecule-inorganic material interactions. It is believed that with continued experimental efforts and fundamental understanding of biomolecule-material interactions scientists can one day harvest the ability to rationally design molecules to produce intricate material structures with a similar level of sophistication, precision, and superior functions as those found in nature.


Assuntos
Materiais Biomiméticos/química , Nanoestruturas/química , Nanopartículas Metálicas/química , Peptídeos/química , Peptídeos/metabolismo , Platina/química , Proteínas/química , Proteínas/metabolismo
5.
Nano Lett ; 13(2): 840-6, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23320831

RESUMO

Surfactants with preferential adsorption to certain crystal facets have been widely employed to manipulate morphologies of colloidal nanocrystals, while mechanisms regarding the origin of facet selectivity remain an enigma. Similar questions exist in biomimetic syntheses concerning biomolecular recognition to materials and crystal surfaces. Here we present mechanistic studies on the molecular origin of the recognition toward platinum {111} facet. By manipulating the conformations and chemical compositions of a platinum {111} facet specific peptide, phenylalanine is identified as the dominant motif to differentiate {111} from other facets. The discovered recognition motif is extended to convert nonspecific peptides into {111} specific peptides. Further extension of this mechanism allows the rational design of small organic molecules that demonstrate preferential adsorption to the {111} facets of both platinum and rhodium nanocrystals. This work represents an advance in understanding the organic-inorganic interfacial interactions in colloidal systems and paves the way to rational and predictable nanostructure modulations for many applications.


Assuntos
Materiais Biomiméticos/química , Nanopartículas Metálicas/química , Peptídeos/química , Platina/química , Adsorção , Materiais Biomiméticos/síntese química , Modelos Moleculares , Tamanho da Partícula , Peptídeos/síntese química , Fenilalanina/química , Propriedades de Superfície
6.
J Am Chem Soc ; 135(41): 15489-500, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24050216

RESUMO

We aim to provide a model platform composed of aromatic molecules and noble metal surfaces to study the molecular facet-selective adsorption and employ the discoveries to design surfactants for predictable shape-controlled syntheses of nanocrystals. Starting from Pt, it is demonstrated that negative electrostatic potential on the aromatic ring is the prerequisite to display binding selectivity to Pt(111), while a neutral to positive one prefers Pt(100). The geometric matching between molecular binding sites and surface lattices plays a role as well in facet selectivity. Significantly, Raman spectroscopy has been employed to probe the interactions between aromatic molecules and metal surfaces, providing direct evidence of their binding mechanisms. These discoveries are further exploited to design and identify Pd(111) and Pd(100) facet-specific surfactants. These results represent a step forward in achieving predictable and programmable nanostructures through better understanding of organic-inorganic interfaces.

7.
J Am Chem Soc ; 134(30): 12326-9, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22783832

RESUMO

Oxygen reduction reaction (ORR) catalyst supported by hybrid composite materials is prepared by well-mixing carbon black (CB) with Pt-loaded reduced graphene oxide (RGO). With the insertion of CB particles between RGO sheets, stacking of RGO can be effectively prevented, promoting diffusion of oxygen molecules through the RGO sheets and enhancing the ORR electrocatalytic activity. The accelerated durability test (ADT) demonstrates that the hybrid supporting material can dramatically enhance the durability of the catalyst and retain the electrochemical surface area (ECSA) of Pt: the final ECSA of the Pt nanocrystal on the hybrid support after 20 000 ADT cycles is retained at >95%, much higher than the commercially available catalyst. We suggest that the unique 2D profile of the RGO functions as a barrier, preventing leaching of Pt into the electrolyte, and the CB in the vicinity acts as active sites to recapture/renucleate the dissolved Pt species. We furthermore demonstrate that the working mechanism can be applied to the commercial Pt/C product to greatly enhance its durability.

8.
Nano Lett ; 11(7): 3040-6, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21667927

RESUMO

Shape-controlled synthesis requires rigorous kinetic control over both nucleation and growth. For platinum (Pt), to date it is still challenging to generate twinned seeds in nucleation in a controllable fashion. Here, we report that a specific Pt binding peptide BP7A is able to mediate and stabilize single-twinned seeds formation at the nucleation stage under mild conditions. Importantly, it targets the control over nucleation directly. Combining with control over growth, we further demonstrate the rational design and synthesis of single-twinned structures, right bipyramid and {111}-bipyramid, by incorporating targeted facet stabilization over {100} facet and {111} facet, respectively. To the best of our knowledge, this is the first report on the successful synthesis of single-twinned bipyramids for Pt nanocrystals (NCs) with high yields. The work here demonstrates the power of biomolecules in recognizing and mediating inorganic nanomaterials synthesis, guiding the formation of material structures that are otherwise unconventional, and hence presenting one step further toward predictable and programmable biomimetic synthesis.


Assuntos
Nanopartículas/química , Compostos Organoplatínicos/síntese química , Peptídeos/química , Platina/química , Cinética , Modelos Moleculares , Nanotecnologia , Compostos Organoplatínicos/química , Tamanho da Partícula , Propriedades de Superfície
9.
Angew Chem Int Ed Engl ; 51(16): 3822-5, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22368046

RESUMO

Well supported: stable hemin-graphene conjugates formed by immobilization of monomeric hemin on graphene, showed excellent catalytic activity, more than 10 times better than that of the recently developed hemin-hydrogel system and 100 times better than that of unsupported hemin. The catalysts also showed excellent binding affinities and catalytic efficiencies approaching that of natural enzymes.


Assuntos
Materiais Biomiméticos/química , Grafite/química , Hemina/química , Catálise , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Cinética , Oxirredução , Óxidos/química
10.
Sci Adv ; 3(1): e1600615, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28070555

RESUMO

Metallic nanoparticles are emerging as an exciting class of heterogeneous catalysts with the potential advantages of exceptional activity, stability, recyclability, and easier separation than homogeneous catalysts. The traditional colloid nanoparticle syntheses usually involve strong surface binding ligands that could passivate the surface active sites and result in poor catalytic activity. The subsequent removal of surface ligands could reactivate the surface but often leads to metal ion leaching and/or severe Ostwald ripening with diminished catalytic activity or poor stability. Molecular ligand engineering represents a powerful strategy for the design of homogeneous molecular catalysts but is insufficiently explored for nanoparticle catalysts to date. We report a systematic investigation on molecular ligand modulation of palladium (Pd) nanoparticle catalysts. Our studies show that ß-functional groups of butyric acid ligand on Pd nanoparticles can significantly modulate the catalytic reaction process to modify the catalytic activity and stability for important aerobic reactions. With a ß-hydroxybutyric acid ligand, the Pd nanoparticle catalysts exhibit exceptional catalytic activity and stability with an unsaturated turnover number (TON) >3000 for dehydrogenative oxidation of cyclohexenone to phenol, greatly exceeding that of homogeneous Pd(II) catalysts (TON, ~30). This study presents a systematic investigation of molecular ligand modulation of nanoparticle catalysts and could open up a new pathway toward the design and construction of highly efficient and robust heterogeneous catalysts through molecular ligand engineering.

11.
Nat Commun ; 5: 3200, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24518643

RESUMO

The integration of multiple synergistic catalytic systems can enable the creation of biocompatible enzymatic mimics for cascading reactions under physiologically relevant conditions. Here we report the design of a graphene-haemin-glucose oxidase conjugate as a tandem catalyst, in which graphene functions as a unique support to integrate molecular catalyst haemin and enzymatic catalyst glucose oxidase for biomimetic generation of antithrombotic species. Monomeric haemin can be conjugated with graphene through π-π interactions to function as an effective catalyst for the oxidation of endogenous L-arginine by hydrogen peroxide. Furthermore, glucose oxidase can be covalently linked onto graphene for local generation of hydrogen peroxide through the oxidation of blood glucose. Thus, the integrated graphene-haemin-glucose oxidase catalysts can readily enable the continuous generation of nitroxyl, an antithrombotic species, from physiologically abundant glucose and L-arginine. Finally, we demonstrate that the conjugates can be embedded within polyurethane to create a long-lasting antithrombotic coating for blood-contacting biomedical devices.


Assuntos
Arginina/metabolismo , Aspergillus niger/enzimologia , Fibrinolíticos/metabolismo , Proteínas Fúngicas/metabolismo , Glucose Oxidase/metabolismo , Glucose/metabolismo , Óxidos de Nitrogênio/metabolismo , Materiais Biomiméticos , Catálise , Proteínas Fúngicas/química , Glucose Oxidase/química , Grafite/química , Hemina/química , Peróxido de Hidrogênio
12.
Nanoscale ; 5(14): 6284-90, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23740179

RESUMO

Compared with Ag, Au, Pt and Pd, the synthesis of Cu nanocrystals that exhibit well-defined structures and surface properties has achieved limited success. Herein, we report an etching and protecting strategy to prepare Cu nanostructures with controllable shapes, crystalline nature and surface properties. In the developed strategy, the selective use of different additives is critical to the successful synthesis of the Cu nanocrystals: while NH4Cl (or hexadecyltrimethylammonium chloride (CTAC)) functions as an etchant by a Cl(-)-O2 pair that can selectively remove twinned nuclei and induce the formation of single nanocrystals with a cubic morphology, the addition of RuCl3 (or FeCl3, FeCl2) can protect the multiply twinned seeds from being etched, and leads to the formation of 5-fold twined nanowires. The controlling strategy reported herein is highlighted by its simplicity and versatility. By further increasing the reaction temperature and prolonging the reaction time, bimetallic CuRu nanotubes can be readily prepared. The applications of these well-defined nanostructures and the developed strategy in controlling other metals are currently under investigation.

13.
Adv Mater ; 25(21): 2974-9, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23606407

RESUMO

A facile strategy to Pt3Ni nanocrystals with highly porous features is developed. The integration of a high surface area and rich step/edge atoms endows the nanocrystals with an impressive oxygen reduction reaction (ORR) specific activity and mass activity. These nanocrystals are more stable in ORR and show a small activity change after 6000 potential sweeps. This is a promising material for practical electrocatalytic applications.

14.
Nanoscale ; 4(3): 845-51, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22159178

RESUMO

Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50 mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications.

15.
Nat Chem ; 3(5): 393-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21505499

RESUMO

The properties of a nanocrystal are heavily influenced by its shape. Shape control of a colloidal nanocrystal is believed to be a kinetic process, with high-energy facets growing faster then vanishing, leading to nanocrystals enclosed by low-energy facets. Identifying a surfactant that can specifically bind to a particular crystal facet is critical, but has proved challenging to date. Biomolecules have exquisite specific molecular recognition properties that can be explored for the precise engineering of nanostructured materials. Here, we report the use of facet-specific peptide sequences as regulating agents for the predictable synthesis of platinum nanocrystals with selectively exposed crystal surfaces and particular shapes. The formation of platinum nanocubes and nanotetrahedrons are demonstrated with Pt-{100} and Pt-{111} binding peptides, respectively. Our studies unambiguously demonstrate the abilities of facet-selective binding peptides in determining nanocrystal shape, representing a critical step forward in the use of biomolecules for programmable synthesis of nanostructures.


Assuntos
Nanopartículas , Peptídeos/química , Platina/química , Sequência de Aminoácidos , Microscopia Eletrônica de Transmissão
16.
Nanoscale ; 2(6): 927-30, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20648291

RESUMO

Here we report a peptide-mediated synthesis of Pd NCs in aqueous solution with controllable size in the sub-10 nanometre regime. The specific multifunctional peptide Q7 selected using the phage display technique can bind to the Pd NC surface and act as a stabilizer to mediate Pd crystal nucleation and growth. At the nucleation stage, Q7 bound to and helped stabilize the different-sized small Pd NC nuclei achieved using different concentrations of the external reducing agent, NaBH4. At the growth stage, Q7 played the dual role of binding to and reducing the precursor onto the existing nuclei, which led to the further controllable growth of the Pd NCs. By using the variable sizes of nuclei as seeds, and by introducing different amounts of precursors Pd NCs with tunable sizes from 2.6 to 6.6 nm were achieved with good size distribution.


Assuntos
Nanopartículas Metálicas/química , Paládio/química , Peptídeos/química , Boroidretos/química , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Biblioteca de Peptídeos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA