Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Monit Comput ; 38(3): 671-677, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38530502

RESUMO

PURPOSE: The Prone positioning in addition to non invasive respiratory support is commonly used in patients with acute respiratory failure. The aim of this study was to assess the accuracy of an impedance-based non-invasive respiratory volume monitor (RVM) in supine and in prone position. METHODS: In sedated, paralyzed and mechanically ventilated patients in volume-controlled mode with acute respiratory distress syndrome scheduled for prone positioning it was measured and compared non-invasively tidal volume and respiratory rate provided by the RVM in supine and, subsequently, in prone position, by maintaining unchanged the ventilatory setting. RESULTS: Forty patients were enrolled. No significant difference was found between measurements in supine and in prone position either for tidal volume (p = 0.795; p = 0.302) nor for respiratory rate (p = 0.181; p = 0.604). Comparing supine vs. prone position, the bias and limits of agreements for respiratory rate were 0.12 bpm (-1.4 to 1.6) and 20 mL (-80 to 120) for tidal volume. CONCLUSIONS: The RVM is accurate in assessing tidal volume and respiratory rate in prone compared to supine position. Therefore, the RVM could be applied in non-intubated patients with acute respiratory failure receiving prone positioning to monitor respiratory function.


Assuntos
Respiração Artificial , Síndrome do Desconforto Respiratório , Taxa Respiratória , Volume de Ventilação Pulmonar , Humanos , Decúbito Ventral , Síndrome do Desconforto Respiratório/fisiopatologia , Síndrome do Desconforto Respiratório/terapia , Decúbito Dorsal , Masculino , Feminino , Pessoa de Meia-Idade , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Idoso , Respiração Artificial/métodos , Adulto , Posicionamento do Paciente/métodos , Reprodutibilidade dos Testes , Impedância Elétrica
2.
J Clin Monit Comput ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884875

RESUMO

BACKGROUND: Robotic-assisted laparoscopic radical prostatectomy (RALP) requires pneumoperitoneum and steep Trendelenburg position. Our aim was to investigate the influence of the combination of pneumoperitoneum and Trendelenburg position on mechanical power and its components during RALP. METHODS: Sixty-one prospectively enrolled patients scheduled for RALP were studied in supine position before surgery, during pneumoperitoneum and Trendelenburg position and in supine position after surgery at constant ventilatory setting. In a subgroup of 17 patients the response to increasing positive end-expiratory pressure (PEEP) from 5 to 10 cmH2O was studied. RESULTS: The application of pneumoperitoneum and Trendelenburg position increased the total mechanical power (13.8 [11.6 - 15.5] vs 9.2 [7.5 - 11.7] J/min, p < 0.001) and its elastic and resistive components compared to supine position before surgery. In supine position after surgery the total mechanical power and its elastic component decreased but remained higher compared to supine position before surgery. Increasing PEEP from 5 to 10 cmH2O within each timepoint significantly increased the total mechanical power (supine position before surgery: 9.8 [8.4 - 10.4] vs 12.1 [11.4 - 14.2] J/min, p < 0.001; pneumoperitoneum and Trendelenburg position: 13.8 [12.2 - 14.3] vs 15.5 [15.0 - 16.7] J/min, p < 0.001; supine position after surgery: 10.2 [9.4 - 10.7] vs 12.7 [12.0 - 13.6] J/min, p < 0.001), without affecting respiratory system elastance. CONCLUSION: Mechanical power in healthy patients undergoing RALP significantly increased both during the pneumoperitoneum and Trendelenburg position and in supine position after surgery. PEEP always increased mechanical power without ameliorating the respiratory system elastance.

3.
Thorax ; 78(1): 97-105, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35803726

RESUMO

This review aims to: (1) describe the rationale of pleural (PPL) and transpulmonary (PL) pressure measurements in children during mechanical ventilation (MV); (2) discuss its usefulness and limitations as a guide for protective MV; (3) propose future directions for paediatric research. We conducted a scoping review on PL in critically ill children using PubMed and Embase search engines. We included peer-reviewed studies using oesophageal (PES) and PL measurements in the paediatric intensive care unit (PICU) published until September 2021, and excluded studies in neonates and patients treated with non-invasive ventilation. PL corresponds to the difference between airway pressure and PPL Oesophageal manometry allows measurement of PES, a good surrogate of PPL, to estimate PL directly at the bedside. Lung stress is the PL, while strain corresponds to the lung deformation induced by the changing volume during insufflation. Lung stress and strain are the main determinants of MV-related injuries with PL and PPL being key components. PL-targeted therapies allow tailoring of MV: (1) Positive end-expiratory pressure (PEEP) titration based on end-expiratory PL (direct measurement) may be used to avoid lung collapse in the lung surrounding the oesophagus. The clinical benefit of such strategy has not been demonstrated yet. This approach should consider the degree of recruitable lung, and may be limited to patients in which PEEP is set to achieve an end-expiratory PL value close to zero; (2) Protective ventilation based on end-inspiratory PL (derived from the ratio of lung and respiratory system elastances), might be used to limit overdistention and volutrauma by targeting lung stress values < 20-25 cmH2O; (3) PPL may be set to target a physiological respiratory effort in order to avoid both self-induced lung injury and ventilator-induced diaphragm dysfunction; (4) PPL or PL measurements may contribute to a better understanding of cardiopulmonary interactions. The growing cardiorespiratory system makes children theoretically more susceptible to atelectrauma, myotrauma and right ventricle failure. In children with acute respiratory distress, PPL and PL measurements may help to characterise how changes in PEEP affect PPL and potentially haemodynamics. In the PICU, PPL measurement to estimate respiratory effort is useful during weaning and ventilator liberation. Finally, the use of PPL tracings may improve the detection of patient ventilator asynchronies, which are frequent in children. Despite these numerous theoritcal benefits in children, PES measurement is rarely performed in routine paediatric practice. While the lack of robust clincal data partially explains this observation, important limitations of the existing methods to estimate PPL in children, such as their invasiveness and technical limitations, associated with the lack of reference values for lung and chest wall elastances may also play a role. PPL and PL monitoring have numerous potential clinical applications in the PICU to tailor protective MV, but its usefulness is counterbalanced by technical limitations. Paediatric evidence seems currently too weak to consider oesophageal manometry as a routine respiratory monitoring. The development and validation of a noninvasive estimation of PL and multimodal respiratory monitoring may be worth to be evaluated in the future.


Assuntos
Respiração Artificial , Síndrome do Desconforto Respiratório , Recém-Nascido , Humanos , Criança , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Respiração com Pressão Positiva/métodos , Pulmão , Manometria/métodos , Síndrome do Desconforto Respiratório/terapia
4.
Crit Care Med ; 51(5): 619-631, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36867727

RESUMO

OBJECTIVES: To determine the prevalence and outcomes associated with hemorrhage, disseminated intravascular coagulopathy, and thrombosis (HECTOR) complications in ICU patients with COVID-19. DESIGN: Prospective, observational study. SETTING: Two hundred twenty-nine ICUs across 32 countries. PATIENTS: Adult patients (≥ 16 yr) admitted to participating ICUs for severe COVID-19 from January 1, 2020, to December 31, 2021. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: HECTOR complications occurred in 1,732 of 11,969 study eligible patients (14%). Acute thrombosis occurred in 1,249 patients (10%), including 712 (57%) with pulmonary embolism, 413 (33%) with myocardial ischemia, 93 (7.4%) with deep vein thrombosis, and 49 (3.9%) with ischemic strokes. Hemorrhagic complications were reported in 579 patients (4.8%), including 276 (48%) with gastrointestinal hemorrhage, 83 (14%) with hemorrhagic stroke, 77 (13%) with pulmonary hemorrhage, and 68 (12%) with hemorrhage associated with extracorporeal membrane oxygenation (ECMO) cannula site. Disseminated intravascular coagulation occurred in 11 patients (0.09%). Univariate analysis showed that diabetes, cardiac and kidney diseases, and ECMO use were risk factors for HECTOR. Among survivors, ICU stay was longer (median days 19 vs 12; p < 0.001) for patients with versus without HECTOR, but the hazard of ICU mortality was similar (hazard ratio [HR] 1.01; 95% CI 0.92-1.12; p = 0.784) overall, although this hazard was identified when non-ECMO patients were considered (HR 1.13; 95% CI 1.02-1.25; p = 0.015). Hemorrhagic complications were associated with an increased hazard of ICU mortality compared to patients without HECTOR complications (HR 1.26; 95% CI 1.09-1.45; p = 0.002), whereas thrombosis complications were associated with reduced hazard (HR 0.88; 95% CI 0.79-0.99, p = 0.03). CONCLUSIONS: HECTOR events are frequent complications of severe COVID-19 in ICU patients. Patients receiving ECMO are at particular risk of hemorrhagic complications. Hemorrhagic, but not thrombotic complications, are associated with increased ICU mortality.


Assuntos
COVID-19 , Trombose , Adulto , Humanos , COVID-19/complicações , COVID-19/epidemiologia , COVID-19/terapia , Estudos Prospectivos , Estado Terminal , Trombose/epidemiologia , Trombose/etiologia , Cuidados Críticos , Hemorragia/epidemiologia , Hemorragia/etiologia , Estudos Retrospectivos
5.
Anesthesiology ; 138(3): 289-298, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36571571

RESUMO

BACKGROUND: Under the hypothesis that mechanical power ratio could identify the spontaneously breathing patients with a higher risk of respiratory failure, this study assessed lung mechanics in nonintubated patients with COVID-19 pneumonia, aiming to (1) describe their characteristics; (2) compare lung mechanics between patients who received respiratory treatment escalation and those who did not; and (3) identify variables associated with the need for respiratory treatment escalation. METHODS: Secondary analysis of prospectively enrolled cohort involving 111 consecutive spontaneously breathing adults receiving continuous positive airway pressure, enrolled from September 2020 to December 2021. Lung mechanics and other previously reported predictive indices were calculated, as well as a novel variable: the mechanical power ratio (the ratio between the actual and the expected baseline mechanical power). Patients were grouped according to the outcome: (1) no-treatment escalation (patient supported in continuous positive airway pressure until improvement) and (2) treatment escalation (escalation of the respiratory support to noninvasive or invasive mechanical ventilation), and the association between lung mechanics/predictive scores and outcome was assessed. RESULTS: At day 1, patients undergoing treatment escalation had spontaneous tidal volume similar to those of patients who did not (7.1 ± 1.9 vs. 7.1 ± 1.4 ml/kgIBW; P = 0.990). In contrast, they showed higher respiratory rate (20 ± 5 vs. 18 ± 5 breaths/min; P = 0.028), minute ventilation (9.2 ± 3.0 vs. 7.9 ± 2.4 l/min; P = 0.011), tidal pleural pressure (8.1 ± 3.7 vs. 6.0 ± 3.1 cm H2O; P = 0.003), mechanical power ratio (2.4 ± 1.4 vs. 1.7 ± 1.5; P = 0.042), and lower partial pressure of alveolar oxygen/fractional inspired oxygen tension (174 ± 64 vs. 220 ± 95; P = 0.007). The mechanical power (area under the curve, 0.738; 95% CI, 0.636 to 0.839] P < 0.001), the mechanical power ratio (area under the curve, 0.734; 95% CI, 0.625 to 0.844; P < 0.001), and the pressure-rate index (area under the curve, 0.733; 95% CI, 0.631 to 0.835; P < 0.001) showed the highest areas under the curve. CONCLUSIONS: In this COVID-19 cohort, tidal volume was similar in patients undergoing treatment escalation and in patients who did not; mechanical power, its ratio, and pressure-rate index were the variables presenting the highest association with the clinical outcome.


Assuntos
COVID-19 , Adulto , Humanos , Respiração Artificial , Respiração , Pressão Positiva Contínua nas Vias Aéreas , Oxigênio
6.
Br J Anaesth ; 131(4): 764-774, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37541952

RESUMO

Robotic-assisted surgery has improved the precision and accuracy of surgical movements with subsequent improved outcomes. However, it requires steep Trendelenburg positioning combined with pneumoperitoneum that negatively affects respiratory mechanics and increases the risk of postoperative respiratory complications. This narrative review summarises the state of the art in ventilatory management of these patients in terms of levels of positive end-expiratory pressure (PEEP), tidal volume, recruitment manoeuvres, and ventilation modes during both urological and gynaecological robotic-assisted surgery. A review of the literature was conducted using PubMed/MEDLINE; after completing abstract and full-text review, 31 articles were included. Although different levels of PEEP were often evaluated within a protective ventilation strategy, including higher levels of PEEP, lower tidal volume, and recruitment manoeuvres vs a conventional ventilation strategy, we conclude that the best PEEP in terms of lung mechanics, gas exchange, and ventilation distribution has not been defined, but moderate PEEP levels (4-8 cm H2O) could be associated with better outcomes than lower or highest levels. Recruitment manoeuvres improved intraoperative arterial oxygenation, end-expiratory lung volume and the distribution of ventilation to dependent (dorsal) lung regions. Pressure-controlled compared with volume-controlled ventilation showed lower peak airway pressures with both higher compliance and higher carbon dioxide clearance. We propose directions to optimise ventilatory management during robotic surgery in light of the current evidence.


Assuntos
Procedimentos Cirúrgicos Robóticos , Humanos , Procedimentos Cirúrgicos Robóticos/efeitos adversos , Pulmão , Respiração com Pressão Positiva/efeitos adversos , Volume de Ventilação Pulmonar , Mecânica Respiratória , Complicações Pós-Operatórias/etiologia
7.
Br J Anaesth ; 130(3): 360-367, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36470747

RESUMO

BACKGROUND: Ventilatory ratio (VR) has been proposed as an alternative approach to estimate physiological dead space. However, the absolute value of VR, at constant dead space, might be affected by venous admixture and CO2 volume expired per minute (VCO2). METHODS: This was a retrospective, observational study of mechanically ventilated patients with acute respiratory distress syndrome (ARDS) in the UK and Italy. Venous admixture was either directly measured or estimated using the surrogate measure PaO2/FiO2 ratio. VCO2 was estimated through the resting energy expenditure derived from the Harris-Benedict formula. RESULTS: A total of 641 mechanically ventilated patients with mild (n=65), moderate (n=363), or severe (n=213) ARDS were studied. Venous admixture was measured (n=153 patients) or estimated using the PaO2/FiO2 ratio (n=448). The VR increased exponentially as a function of the dead space, and the absolute values of this relationship were a function of VCO2. At a physiological dead space of 0.6, VR was 1.1, 1.4, and 1.7 in patients with VCO2 equal to 200, 250, and 300, respectively. VR was independently associated with mortality (odds ratio [OR]=2.5; 95% confidence interval [CI], 1.8-3.5), but was not associated when adjusted for VD/VTphys, VCO2, PaO2/FiO2 (ORadj=1.2; 95% CI, 0.7-2.1). These three variables remained independent predictors of ICU mortality (VD/VTphys [ORadj=17.9; 95% CI, 1.8-185; P<0.05]; VCO2 [ORadj=0.99; 95% CI, 0.99-1.00; P<0.001]; and PaO2/FiO2 (ORadj=0.99; 95% CI, 0.99-1.00; P<0.001]). CONCLUSIONS: VR is a useful aggregate variable associated with outcome, but variables not associated with ventilation (VCO2 and venous admixture) strongly contribute to the high values of VR seen in patients with severe illness.


Assuntos
Síndrome do Desconforto Respiratório , Humanos , Estudos Retrospectivos , Síndrome do Desconforto Respiratório/terapia , Respiração , Itália , Espaço Morto Respiratório , Respiração Artificial
8.
Curr Opin Anaesthesiol ; 36(6): 657-665, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37724574

RESUMO

PURPOSE OF REVIEW: Robotic-assisted laparoscopic radical prostatectomy has become the second most commonly performed robotic surgical procedure worldwide, therefore, anesthesiologists should be aware of the intraoperative pathophysiological consequences. The aim of this narrative review is to report the most recent updates regarding the intraoperative management of anesthesia, ventilation, hemodynamics and central nervous system, during robotic-assisted laparoscopic radical prostatectomy. RECENT FINDINGS: Surgical innovations and the advent of new technologies make it imperative to optimize the anesthesia management to provide the most holistic approach possible. In addition, an ageing population with an increasing burden of comorbidities requires multifocal attention to reduce the surgical stress. SUMMARY: Total intravenous anesthesia (TIVA) and balanced general anesthesia are similar in terms of postoperative complications and hospital stay. Reversal of rocuronium is associated with shorter hospital stay and postanesthesia recovery time. Adequate PEEP levels improve oxygenation and driving pressure, and the use of a single recruitment maneuver after the intubation reduces postoperative pulmonary complications. Restrictive intravenous fluid administration minimizes bladder-urethra anastomosis complications and facial edema. TIVA maintains a better autoregulation compared with balanced general anesthesia. Anesthesiologists should be able to optimize the intraoperative management to improve outcomes.

9.
Crit Care Med ; 50(4): 633-643, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582426

RESUMO

OBJECTIVES: Prone position is used in acute respiratory distress syndrome and in coronavirus disease 2019 acute respiratory distress syndrome. However, it is unclear how responders may be identified and whether an oxygenation response improves outcome. The objective of this study was to quantify the response to prone position, describe the differences between coronavirus disease 2019 acute respiratory distress syndrome and acute respiratory distress syndrome, and explore variables associated with survival. DESIGN: Retrospective, observational, multicenter, international cohort study. SETTING: Seven ICUs in Italy, United Kingdom, and France. PATIENTS: Three hundred seventy-six adults (220 coronavirus disease 2019 acute respiratory distress syndrome and 156 acute respiratory distress syndrome). INTERVENTION: None. MEASUREMENTS AND MAIN RESULTS: Preproning, a greater proportion of coronavirus disease 2019 acute respiratory distress syndrome patients had severe disease (53% vs 40%), worse Pao2/Fio2 (13.0 kPa [interquartile range, 10.5-15.5 kPa] vs 14.1 kPa [interquartile range, 10.5-18.6 kPa]; p = 0.017) but greater compliance (38 mL/cm H2O [interquartile range, 27-53 mL/cm H2O] vs 31 mL/cm H2O [interquartile range, 21-37 mL/cm H2O]; p < 0.001). Patients with coronavirus disease 2019 acute respiratory distress syndrome had a longer median time from intubation to prone position (2.0 d [interquartile range, 0.7-5.0 d] vs 1.0 d [interquartile range, 0.5-2.9 d]; p = 0.03). The proportion of responders, defined by an increase in Pao2/Fio2 greater than or equal to 2.67 kPa (20 mm Hg), upon proning, was similar between acute respiratory distress syndrome and coronavirus disease 2019 acute respiratory distress syndrome (79% vs 76%; p = 0.5). Responders had earlier prone position (1.4 d [interquartile range, 0.7-4.2 d] vs 2.5 d [interquartile range, 0.8-6.2 d]; p = 0.06)]. Prone position less than 24 hours from intubation achieved greater improvement in oxygenation (11 kPa [interquartile range, 4-21 kPa] vs 7 kPa [interquartile range, 2-13 kPa]; p = 0.002). The variables independently associated with the "responder" category were Pao2/Fio2 preproning (odds ratio, 0.89 kPa-1 [95% CI, 0.85-0.93 kPa-1]; p < 0.001) and interval between intubation and proning (odds ratio, 0.94 d-1 [95% CI, 0.89-0.99 d-1]; p = 0.019). The overall mortality was 45%, with no significant difference observed between acute respiratory distress syndrome and coronavirus disease 2019 acute respiratory distress syndrome. Variables independently associated with mortality included age (odds ratio, 1.03 yr-1 [95% CI, 1.01-1.05 yr-1]; p < 0.001); interval between hospital admission and proning (odds ratio, 1.04 d-1 [95% CI, 1.002-1.084 d-1]; p = 0.047); and change in Pao2/Fio2 on proning (odds ratio, 0.97 kPa-1 [95% CI, 0.95-0.99 kPa-1]; p = 0.002). CONCLUSIONS: Prone position, particularly when delivered early, achieved a significant oxygenation response in ~80% of coronavirus disease 2019 acute respiratory distress syndrome, similar to acute respiratory distress syndrome. This response was independently associated with improved survival.


Assuntos
COVID-19/terapia , Decúbito Ventral , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/terapia , Idoso , COVID-19/complicações , COVID-19/fisiopatologia , Europa (Continente) , Feminino , Humanos , Unidades de Terapia Intensiva , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Razão de Chances , Posicionamento do Paciente , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/fisiopatologia , Testes de Função Respiratória , Estudos Retrospectivos
10.
Crit Care ; 26(1): 141, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581612

RESUMO

BACKGROUND: The role of neuromuscular blocking agents (NMBAs) in coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS) is not fully elucidated. Therefore, we aimed to investigate in COVID-19 patients with moderate-to-severe ARDS the impact of early use of NMBAs on 90-day mortality, through propensity score (PS) matching analysis. METHODS: We analyzed a convenience sample of patients with COVID-19 and moderate-to-severe ARDS, admitted to 244 intensive care units within the COVID-19 Critical Care Consortium, from February 1, 2020, through October 31, 2021. Patients undergoing at least 2 days and up to 3 consecutive days of NMBAs (NMBA treatment), within 48 h from commencement of IMV were compared with subjects who did not receive NMBAs or only upon commencement of IMV (control). The primary objective in the PS-matched cohort was comparison between groups in 90-day in-hospital mortality, assessed through Cox proportional hazard modeling. Secondary objectives were comparisons in the numbers of ventilator-free days (VFD) between day 1 and day 28 and between day 1 and 90 through competing risk regression. RESULTS: Data from 1953 patients were included. After propensity score matching, 210 cases from each group were well matched. In the PS-matched cohort, mean (± SD) age was 60.3 ± 13.2 years and 296 (70.5%) were male and the most common comorbidities were hypertension (56.9%), obesity (41.1%), and diabetes (30.0%). The unadjusted hazard ratio (HR) for death at 90 days in the NMBA treatment vs control group was 1.12 (95% CI 0.79, 1.59, p = 0.534). After adjustment for smoking habit and critical therapeutic covariates, the HR was 1.07 (95% CI 0.72, 1.61, p = 0.729). At 28 days, VFD were 16 (IQR 0-25) and 25 (IQR 7-26) in the NMBA treatment and control groups, respectively (sub-hazard ratio 0.82, 95% CI 0.67, 1.00, p = 0.055). At 90 days, VFD were 77 (IQR 0-87) and 87 (IQR 0-88) (sub-hazard ratio 0.86 (95% CI 0.69, 1.07; p = 0.177). CONCLUSIONS: In patients with COVID-19 and moderate-to-severe ARDS, short course of NMBA treatment, applied early, did not significantly improve 90-day mortality and VFD. In the absence of definitive data from clinical trials, NMBAs should be indicated cautiously in this setting.


Assuntos
Tratamento Farmacológico da COVID-19 , Bloqueadores Neuromusculares , Síndrome do Desconforto Respiratório , Idoso , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Bloqueadores Neuromusculares/uso terapêutico , Pontuação de Propensão , Respiração Artificial , Síndrome do Desconforto Respiratório/tratamento farmacológico
11.
Ultraschall Med ; 43(5): 464-472, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34734405

RESUMO

PURPOSE: The goal of this survey was to describe the use and diffusion of lung ultrasound (LUS), the level of training received before and during the COVID-19 pandemic, and the clinical impact LUS has had on COVID-19 cases in intensive care units (ICU) from February 2020 to May 2020. MATERIALS AND METHODS: The Italian Lung Ultrasound Survey (ITALUS) was a nationwide online survey proposed to Italian anesthesiologists and intensive care physicians carried out after the first wave of the COVID-19 pandemic. It consisted of 27 questions, both quantitative and qualitative. RESULTS: 807 responded to the survey. The median previous LUS experience was 3 years (IQR 1.0-6.0). 473 (60.9 %) reported having attended at least one training course on LUS before the COVID-19 pandemic. 519 (73.9 %) reported knowing how to use the LUS score. 404 (52 %) reported being able to use LUS without any supervision. 479 (68.2 %) said that LUS influenced their clinical decision-making, mostly with respect to patient monitoring. During the pandemic, the median of patients daily evaluated with LUS increased 3-fold (p < 0.001), daily use of general LUS increased from 10.4 % to 28.9 % (p < 0.001), and the daily use of LUS score in particular increased from 1.6 % to 9.0 % (p < 0.001). CONCLUSION: This survey showed that LUS was already extensively used during the first wave of the COVID-19 pandemic by anesthesiologists and intensive care physicians in Italy, and then its adoption increased further. Residency programs are already progressively implementing LUS teaching. However, 76.7 % of the sample did not undertake any LUS certification.


Assuntos
Analgesia , Anestesia , COVID-19 , Cuidados Críticos , Humanos , Pulmão/diagnóstico por imagem , Pandemias , Ultrassonografia/métodos
12.
Crit Care ; 25(1): 431, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34915911

RESUMO

BACKGROUND: We hypothesized that as CARDS may present different pathophysiological features than classic ARDS, the application of high levels of end-expiratory pressure is questionable. Our first aim was to investigate the effects of 5-15 cmH2O of PEEP on partitioned respiratory mechanics, gas exchange and dead space; secondly, we investigated whether respiratory system compliance and severity of hypoxemia could affect the response to PEEP on partitioned respiratory mechanics, gas exchange and dead space, dividing the population according to the median value of respiratory system compliance and oxygenation. Thirdly, we explored the effects of an additional PEEP selected according to the Empirical PEEP-FiO2 table of the EPVent-2 study on partitioned respiratory mechanics and gas exchange in a subgroup of patients. METHODS: Sixty-one paralyzed mechanically ventilated patients with a confirmed diagnosis of SARS-CoV-2 were enrolled (age 60 [54-67] years, PaO2/FiO2 113 [79-158] mmHg and PEEP 10 [10-10] cmH2O). Keeping constant tidal volume, respiratory rate and oxygen fraction, two PEEP levels (5 and 15 cmH2O) were selected. In a subgroup of patients an additional PEEP level was applied according to an Empirical PEEP-FiO2 table (empirical PEEP). At each PEEP level gas exchange, partitioned lung mechanics and hemodynamic were collected. RESULTS: At 15 cmH2O of PEEP the lung elastance, lung stress and mechanical power were higher compared to 5 cmH2O. The PaO2/FiO2, arterial carbon dioxide and ventilatory ratio increased at 15 cmH2O of PEEP. The arterial-venous oxygen difference and central venous saturation were higher at 15 cmH2O of PEEP. Both the mechanics and gas exchange variables significantly increased although with high heterogeneity. By increasing the PEEP from 5 to 15 cmH2O, the changes in partitioned respiratory mechanics and mechanical power were not related to hypoxemia or respiratory compliance. The empirical PEEP was 18 ± 1 cmH2O. The empirical PEEP significantly increased the PaO2/FiO2 but also driving pressure, lung elastance, lung stress and mechanical power compared to 15 cmH2O of PEEP. CONCLUSIONS: In COVID-19 ARDS during the early phase the effects of raising PEEP are highly variable and cannot easily be predicted by respiratory system characteristics, because of the heterogeneity of the disease.


Assuntos
COVID-19/terapia , Respiração com Pressão Positiva , Síndrome do Desconforto Respiratório/terapia , Lesão Pulmonar Induzida por Ventilação Mecânica , COVID-19/diagnóstico , Cuidados Críticos , Humanos , Hipóxia , Pessoa de Meia-Idade , Oxigênio/uso terapêutico , SARS-CoV-2 , Lesão Pulmonar Induzida por Ventilação Mecânica/diagnóstico por imagem
13.
Crit Care ; 25(1): 154, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888134

RESUMO

BACKGROUND: Acute respiratory distress syndrome remains a heterogeneous syndrome for clinicians and researchers difficulting successful tailoring of interventions and trials. To this moment, phenotyping of this syndrome has been approached by means of inflammatory laboratory panels. Nevertheless, the systemic and inflammatory expression of acute respiratory distress syndrome might not reflect its respiratory mechanics and gas exchange. METHODS: Retrospective analysis of a prospective cohort of two hundred thirty-eight patients consecutively admitted patients under mechanical ventilation presenting with acute respiratory distress syndrome. All patients received standardized monitoring of clinical variables, respiratory mechanics and computed tomography scans at predefined PEEP levels. Employing latent class analysis, an unsupervised structural equation modelling method, on respiratory mechanics, gas-exchange and computed tomography-derived gas- and tissue-volumes at a PEEP level of 5cmH2O, distinct pulmonary phenotypes of acute respiratory distress syndrome were identified. RESULTS: Latent class analysis was applied to 54 respiratory mechanics, gas-exchange and CT-derived gas- and tissue-volume variables, and a two-class model identified as best fitting. Phenotype 1 (non-recruitable) presented lower respiratory system elastance, alveolar dead space and amount of potentially recruitable lung volume than phenotype 2 (recruitable). Phenotype 2 (recruitable) responded with an increase in ventilated lung tissue, compliance and PaO2/FiO2 ratio (p < 0.001), in addition to a decrease in alveolar dead space (p < 0.001), to a standardized recruitment manoeuvre. Patients belonging to phenotype 2 (recruitable) presented a higher intensive care mortality (hazard ratio 2.9, 95% confidence interval 1.7-2.7, p = 0.001). CONCLUSIONS: The present study identifies two ARDS phenotypes based on respiratory mechanics, gas-exchange and computed tomography-derived gas- and tissue-volumes. These phenotypes are characterized by distinctly diverse responses to a standardized recruitment manoeuvre and by a diverging mortality. Given multicentre validation, the simple and rapid identification of these pulmonary phenotypes could facilitate enrichment of future prospective clinical trials addressing mechanical ventilation strategies in ARDS.


Assuntos
Fenótipo , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/terapia , Idoso , Área Sob a Curva , Estudos de Coortes , Feminino , Humanos , Análise de Classes Latentes , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Curva ROC , Síndrome do Desconforto Respiratório/mortalidade , Estudos Retrospectivos , Resultado do Tratamento
14.
Crit Care ; 25(1): 199, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108029

RESUMO

BACKGROUND: Heterogeneous respiratory system static compliance (CRS) values and levels of hypoxemia in patients with novel coronavirus disease (COVID-19) requiring mechanical ventilation have been reported in previous small-case series or studies conducted at a national level. METHODS: We designed a retrospective observational cohort study with rapid data gathering from the international COVID-19 Critical Care Consortium study to comprehensively describe CRS-calculated as: tidal volume/[airway plateau pressure-positive end-expiratory pressure (PEEP)]-and its association with ventilatory management and outcomes of COVID-19 patients on mechanical ventilation (MV), admitted to intensive care units (ICU) worldwide. RESULTS: We studied 745 patients from 22 countries, who required admission to the ICU and MV from January 14 to December 31, 2020, and presented at least one value of CRS within the first seven days of MV. Median (IQR) age was 62 (52-71), patients were predominantly males (68%) and from Europe/North and South America (88%). CRS, within 48 h from endotracheal intubation, was available in 649 patients and was neither associated with the duration from onset of symptoms to commencement of MV (p = 0.417) nor with PaO2/FiO2 (p = 0.100). Females presented lower CRS than males (95% CI of CRS difference between females-males: - 11.8 to - 7.4 mL/cmH2O p < 0.001), and although females presented higher body mass index (BMI), association of BMI with CRS was marginal (p = 0.139). Ventilatory management varied across CRS range, resulting in a significant association between CRS and driving pressure (estimated decrease - 0.31 cmH2O/L per mL/cmH20 of CRS, 95% CI - 0.48 to - 0.14, p < 0.001). Overall, 28-day ICU mortality, accounting for the competing risk of being discharged within the period, was 35.6% (SE 1.7). Cox proportional hazard analysis demonstrated that CRS (+ 10 mL/cm H2O) was only associated with being discharge from the ICU within 28 days (HR 1.14, 95% CI 1.02-1.28, p = 0.018). CONCLUSIONS: This multicentre report provides a comprehensive account of CRS in COVID-19 patients on MV. CRS measured within 48 h from commencement of MV has marginal predictive value for 28-day mortality, but was associated with being discharged from ICU within the same period. Trial documentation: Available at https://www.covid-critical.com/study . TRIAL REGISTRATION: ACTRN12620000421932.


Assuntos
COVID-19/complicações , COVID-19/terapia , Complacência Pulmonar/fisiologia , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/terapia , Adulto , Estudos de Coortes , Cuidados Críticos/métodos , Europa (Continente) , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Índice de Gravidade de Doença
15.
Neurol Sci ; 42(12): 4893-4898, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34477990

RESUMO

INTRODUCTION: Neurological complications of SARS-CoV-2 disease have received growing attention, but only few studies have described to date clinical and neurophysiological findings in COVID patients during their stay in intensive care units (ICUs). Here, we neurophysiologically assessed the presence of either critical illness neuropathy (CIP) or myopathy (CIM) in ICU patients. MATERIALS AND METHODS: Patients underwent a neurophysiological assessment, including bilateral examination of the median, ulnar, deep peroneal and tibial motor nerves and of the median, ulnar, radial and sural sensory nerves. Needle electromyography (EMG) was performed for both distal and proximal muscles of the lower and upper limbs. In order to differentiate CIP from CIM, Direct Muscle Stimulation (DMS) was applied either to the deltoid or tibialis anterior muscles. Peak to peak amplitudes and onset latencies of the responses evoked by DMS (DMSamp, DMSlat) or by motor nerve stimulation (MNSamp, MNSlat) were compared. The ratio MNSamp to DMSamp (NMR) and the MNSlat to DMSlat difference (NMD: MNSlat - DMSlat) were also evaluated. RESULTS: Nerve conduction studies showed a sensory-motor polyneuropathy with axonal neurogenic pattern, as confirmed by needle EMG. Both MNSamp and NMR were significantly reduced when compared to controls (p < 0.0001), whereas MNSlat and NMD were markedly increased (p = 0.0049). CONCLUSIONS: We have described COVID patients in the ICU with critical illness neuropathy (CIP). COVID-related CIP could have implications for the functional recovery and rehabilitation strategies.


Assuntos
COVID-19 , Doenças Musculares , Polineuropatias , Estado Terminal , Eletromiografia , Humanos , Condução Nervosa , Polineuropatias/complicações , SARS-CoV-2
16.
Crit Care Med ; 48(10): 1494-1502, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32897667

RESUMO

OBJECTIVES: Hysteresis of the respiratory system pressure-volume curve is related to alveolar surface forces, lung stress relaxation, and tidal reexpansion/collapse. Hysteresis has been suggested as a means of assessing lung recruitment. The objective of this study was to determine the relationship between hysteresis, mechanical characteristics of the respiratory system, and lung recruitment assessed by a CT scan in mechanically ventilated acute respiratory distress syndrome patients. DESIGN: Prospective observational study. SETTING: General ICU of a university hospital. PATIENTS: Twenty-five consecutive sedated and paralyzed patients with acute respiratory distress syndrome (age 64 ± 15 yr, body mass index 26 ± 6 kg/m, PaO2/FIO2 147 ± 42, and positive end-expiratory pressure 9.3 ± 1.4 cm H2O) were enrolled. INTERVENTIONS: A low-flow inflation and deflation pressure-volume curve (5-45 cm H2O) and a sustained inflation recruitment maneuver (45 cm H2O for 30 s) were performed. A lung CT scan was performed during breath-holding pressure at 5 cm H2O and during the recruitment maneuver at 45 cm H2O. MEASUREMENTS AND MAIN RESULTS: Lung recruitment was computed as the difference in noninflated tissue and in gas volume measured at 5 and at 45 cm H2O. Hysteresis was calculated as the ratio of the area enclosed by the pressure-volume curve and expressed as the hysteresis ratio. Hysteresis was correlated with respiratory system compliance computed at 5 cm H2O and the lung gas volume entering the lung during inflation of the pressure-volume curve (R = 0.749, p < 0.001 and R = 0.851, p < 0.001). The hysteresis ratio was related to both lung tissue and gas recruitment (R = 0.266, p = 0.008, R = 0.357, p = 0.002, respectively). Receiver operating characteristic analysis showed that the optimal cutoff value to predict lung tissue recruitment for the hysteresis ratio was 28% (area under the receiver operating characteristic curve, 0.80; 95% CI, 0.62-0.98), with sensitivity and specificity of 0.75 and 0.77, respectively. CONCLUSIONS: Hysteresis of the respiratory system computed by low-flow pressure-volume curve is related to the anatomical lung characteristics and has an acceptable accuracy to predict lung recruitment.


Assuntos
Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/fisiopatologia , Mecânica Respiratória/fisiologia , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Respiração Artificial , Tomografia Computadorizada por Raios X
17.
Crit Care ; 24(1): 417, 2020 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-32653011

RESUMO

BACKGROUND: Mechanical power (MP) is the energy delivered to the respiratory system over time during mechanical ventilation. Our aim was to compare the currently available methods to calculate MP during volume- and pressure-controlled ventilation, comparing different equations with the geometric reference method, to understand whether the easier to use surrogate formulas were suitable for the everyday clinical practice. This would warrant a more widespread use of mechanical power to promote lung protection. METHODS: Forty respiratory failure patients, sedated and paralyzed for clinical reasons, were ventilated in volume-controlled ventilation, at two inspiratory flows (30 and 60 L/min), and pressure-controlled ventilation with a similar tidal volume. Mechanical power was computed both with the geometric method, as the area between the inspiratory limb of the airway pressure and the volume, and with two algebraic methods, a comprehensive and a surrogate formula. RESULTS: The bias between the MP computed by the geometric method and by the comprehensive algebraic method during volume-controlled ventilation was respectively 0.053 (0.77, - 0.81) J/min and - 0.4 (0.70, - 1.50) J/min at low and high flows (r2 = 0.96 and 0.97, p < 0.01). The MP measured and computed by the two methods were highly correlated (r2 = 0.95 and 0.94, p < 0.01) with a bias of - 0.0074 (0.91, - 0.93) and - 1.0 (0.45, - 2.52) J/min at high-low flows. During pressure-controlled ventilation, the bias between the MP measured and the one calculated with the comprehensive and simplified methods was correlated (r2 = 0.81, 0.94, p < 0.01) with mean differences of - 0.001 (2.05, - 2.05) and - 0.81 (2.11, - 0.48) J/min. CONCLUSIONS: Both for volume-controlled and pressure-controlled ventilation, the surrogate formulas approximate the reference method well enough to warrant their use in the everyday clinical practice. Given that these formulas require nothing more than the variables already displayed by the intensive care ventilator, a more widespread use of mechanical power should be encouraged to promote lung protection against ventilator-induced lung injury.


Assuntos
Fenômenos Mecânicos , Pressão , Respiração Artificial/classificação , Feminino , Humanos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Respiração Artificial/métodos , Respiração Artificial/normas , Insuficiência Respiratória/fisiopatologia , Insuficiência Respiratória/terapia , Pesos e Medidas/instrumentação
18.
Crit Care ; 24(1): 479, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32746877

RESUMO

BACKGROUND: Besides airway suctioning, patients undergoing invasive mechanical ventilation (iMV) benefit of different combinations of chest physiotherapy techniques, to improve mucus removal. To date, little is known about the clearance effects of oscillating devices on patients with acute respiratory failure undergoing iMV. This study aimed to assess (1) the effects of high-frequency chest wall oscillation (HFCWO) on lung aeration and ventilation distribution, as assessed by electrical impedance tomography (EIT), and (2) the effect of the association of HFCWO with recruitment manoeuvres (RM). METHODS: Sixty critically ill patients, 30 classified as normosecretive and 30 as hypersecretive, who received ≥ 48 h of iMV, underwent HFCWO; patients from both subgroups were randomized to receive RM or not, according to two separated randomization sequences. We therefore obtained four arms of 15 patients each. After baseline record (T0), HFCWO was applied for 10 min. At the end of the treatment (T1) or after 1 (T2) and 3 h (T3), EIT data were recorded. At the beginning of each step, closed tracheobronchial suctioning was performed. In the RM subgroup, tracheobronchial suctioning was followed by application of 30 cmH2O to the patient's airway for 30 s. At each step, we assessed the change in end-expiratory lung impedance (ΔEELI) and in tidal impedance variation (ΔTIV), and the center of gravity (COG) through EIT. We also analysed arterial blood gases (ABGs). RESULTS: ΔTIV and COG did not differ between normosecretive and hypersecretive patients. Compared to T0, ΔEELI significantly increased in hypersecretive patients at T2 and T3, irrespective of the RM; on the contrary, no differences were observed in normosecretive patients. No differences of ABGs were recorded. CONCLUSIONS: In hypersecretive patients, HFCWO significantly improved aeration of the dorsal lung region, without affecting ABGs. The application of RM did not provide any further improvements. TRIAL REGISTRATION: Prospectively registered at the Australian New Zealand Clinical Trial Registry ( www.anzctr.org.au ; number of registration: ACTRN12615001257550; date of registration: 17th November 2015).


Assuntos
Oscilação da Parede Torácica , Modalidades de Fisioterapia , Insuficiência Respiratória/terapia , Idoso , Estado Terminal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Respiração Artificial , Insuficiência Respiratória/fisiopatologia , Resultado do Tratamento
19.
Crit Care ; 24(1): 246, 2020 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448389

RESUMO

BACKGROUND: In ARDS patients, mechanical ventilation should minimize ventilator-induced lung injury. The mechanical power which is the energy per unit time released to the respiratory system according to the applied tidal volume, PEEP, respiratory rate, and flow should reflect the ventilator-induced lung injury. However, similar levels of mechanical power applied in different lung sizes could be associated to different effects. The aim of this study was to assess the role both of the mechanical power and of the transpulmonary mechanical power, normalized to predicted body weight, respiratory system compliance, lung volume, and amount of aerated tissue on intensive care mortality. METHODS: Retrospective analysis of ARDS patients previously enrolled in seven published studies. All patients were sedated, paralyzed, and mechanically ventilated. After 20 min from a recruitment maneuver, partitioned respiratory mechanics measurements and blood gas analyses were performed with a PEEP of 5 cmH2O while the remaining setting was maintained unchanged from the baseline. A whole lung CT scan at 5 cmH2O of PEEP was performed to estimate the lung gas volume and the amount of well-inflated tissue. Univariate and multivariable Poisson regression models with robust standard error were used to calculate risk ratios and 95% confidence intervals of ICU mortality. RESULTS: Two hundred twenty-two ARDS patients were included; 88 (40%) died in ICU. Mechanical power was not different between survivors and non-survivors 14.97 [11.51-18.44] vs. 15.46 [12.33-21.45] J/min and did not affect intensive care mortality. The multivariable robust regression models showed that the mechanical power normalized to well-inflated tissue (RR 2.69 [95% CI 1.10-6.56], p = 0.029) and the mechanical power normalized to respiratory system compliance (RR 1.79 [95% CI 1.16-2.76], p = 0.008) were independently associated with intensive care mortality after adjusting for age, SAPS II, and ARDS severity. Also, transpulmonary mechanical power normalized to respiratory system compliance and to well-inflated tissue significantly increased intensive care mortality (RR 1.74 [1.11-2.70], p = 0.015; RR 3.01 [1.15-7.91], p = 0.025). CONCLUSIONS: In our ARDS population, there is not a causal relationship between the mechanical power itself and mortality, while mechanical power normalized to the compliance or to the amount of well-aerated tissue is independently associated to the intensive care mortality. Further studies are needed to confirm this data.


Assuntos
Respiração Artificial/normas , Síndrome do Desconforto Respiratório/mortalidade , Síndrome do Desconforto Respiratório/terapia , Volume de Ventilação Pulmonar/fisiologia , Adulto , Idoso , Cuidados Críticos/métodos , Feminino , Mortalidade Hospitalar/tendências , Humanos , Masculino , Pessoa de Meia-Idade , Respiração Artificial/métodos , Respiração Artificial/mortalidade , Mecânica Respiratória , Estudos Retrospectivos , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle
20.
Br J Anaesth ; 125(1): e148-e157, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32386831

RESUMO

BACKGROUND: Bedside measures of patient effort are essential to properly titrate the level of pressure support ventilation. We investigated whether the tidal swing in oesophageal (ΔPes) and transdiaphragmatic pressure (ΔPdi), and ultrasonographic changes in diaphragm (TFdi) and parasternal intercostal (TFic) thickening are reliable estimates of respiratory effort. The effect of diaphragm dysfunction was also considered. METHODS: Twenty-one critically ill patients were enrolled: age 73 (14) yr, BMI 27 (7) kg m-2, and Pao2/Fio2 33.3 (9.2) kPa. A three-level pressure support trial was performed: baseline, 25% (PS-medium), and 50% reduction (PS-low). We recorded the oesophageal and transdiaphragmatic pressure-time products (PTPs), work of breathing (WOB), and diaphragm and intercostal ultrasonography. Diaphragm dysfunction was defined by the Gilbert index. RESULTS: Pressure support was 9.0 (1.6) cm H2O at baseline, 6.7 (1.3) (PS-medium), and 4.4 (1.0) (PS-low). ΔPes was significantly associated with the oesophageal PTP (R2=0.868; P<0.001) and the WOB (R2=0.683; P<0.001). ΔPdi was significantly associated with the transdiaphragmatic PTP (R2=0.820; P<0.001). TFdi was only weakly correlated with the oesophageal PTP (R2=0.326; P<0.001), and the correlation improved after excluding patients with diaphragm dysfunction (R2=0.887; P<0.001). TFdi was higher and TFic lower in patients without diaphragm dysfunction: 33.6 (18.2)% vs 13.2 (9.2)% and 2.1 (1.7)% vs 12.7 (9.1)%; P<0.0001. CONCLUSIONS: ΔPes and ΔPdi are adequate estimates of inspiratory effort. Diaphragm ultrasonography is a reliable indicator of inspiratory effort in the absence of diaphragm dysfunction. Additional measurement of parasternal intercostal thickening may discriminate a low inspiratory effort or a high effort in the presence of a dysfunctional diaphragm.


Assuntos
Esôfago/fisiologia , Respiração com Pressão Positiva/métodos , Músculos Respiratórios/fisiologia , Ultrassonografia/métodos , Trabalho Respiratório/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Cuidados Críticos/métodos , Estado Terminal , Diafragma/fisiologia , Esôfago/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculos Respiratórios/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA