RESUMO
Many eukaryotic RNA viruses transcribe subgenomic (sg) mRNAs during infections to control expression of a subset of viral genes. Such transcriptional events are commonly regulated by local or long-range intragenomic interactions that form higher-order RNA structures within these viral genomes. In contrast, here we report that an umbravirus activates sg mRNA transcription via base pair-mediated dimerization of its plus-strand RNA genome. Compelling in vivo and in vitro evidence demonstrate that this viral genome dimerizes via a kissing-loop interaction involving an RNA stem-loop structure located just upstream from its transcriptional initiation site. Both specific and non-specific features of the palindromic kissing-loop complex were found to contribute to transcriptional activation. Structural and mechanistic aspects of the process in umbraviruses are discussed and compared with genome dimerization events in other RNA viruses. Notably, probable dimer-promoting RNA stem-loop structures were also identified in a diverse group of umbra-like viruses, suggesting broader utilization of this unconventional transcriptional strategy.
Assuntos
Regulação Viral da Expressão Gênica , Tombusviridae , Sequência de Bases , Dimerização , Genoma Viral , Conformação de Ácido Nucleico , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , RNA Subgenômico , Tombusviridae/genética , Tombusviridae/metabolismoRESUMO
Different essential viral proteins are translated via programmed stop codon readthrough. Pea enation mosaic virus 1 (PEMV1) and potato leafroll virus (PLRV) are related positive-sense RNA plant viruses in the family Solemoviridae, and are type members of the Enamovirus and Polerovirus genera, respectively. Both use translational readthrough to express a C-terminally extended minor capsid protein (CP), termed CP-readthrough domain (CP-RTD), from a viral subgenomic mRNA that is transcribed during infections. Limited incorporation of CP-RTD subunits into virus particles is essential for aphid transmission, however the functional readthrough structures that mediate CP-RTD translation have not yet been defined. Through RNA solution structure probing, RNA secondary structure modeling, site-directed mutagenesis, and functional in vitro and in vivo analyses, we have investigated in detail the readthrough elements and complex structure involved in expression of CP-RTD in PEMV1, and assessed and deduced a comparatively simpler readthrough structure for PLRV. Collectively, this study has (i) generated the first higher-order RNA structural models for readthrough elements in an enamovirus and a polerovirus, (ii) revealed a stark contrast in the complexity of readthrough structures in these two related viruses, (iii) provided compelling experimental evidence for the strict requirement for long-distance RNA-RNA interactions in generating the active readthrough signals, (iv) uncovered what could be considered the most complex readthrough structure reported to date, that for PEMV1, and (v) proposed plausible assembly pathways for the formation of the elaborate PEMV1 and simple PLRV readthrough structures. These findings notably advance our understanding of this essential mode of gene expression in these agriculturally important plant viruses.
Assuntos
Luteoviridae , Vírus do Mosaico , Proteínas do Capsídeo/genética , Códon de Terminação , Luteoviridae/genética , Pisum sativum/genética , Proteínas Virais/genéticaRESUMO
The genomes of RNA viruses contain regulatory elements of varying complexity. Many plus-strand RNA viruses employ largescale intra-genomic RNA-RNA interactions as a means to control viral processes. Here, we describe an elaborate RNA structure formed by multiple distant regions in a tombusvirus genome that activates transcription of a viral subgenomic mRNA. The initial step in assembly of this intramolecular RNA complex involves the folding of a large viral RNA domain, which generates a discontinuous binding pocket. Next, a distally-located protracted stem-loop RNA structure docks, via base-pairing, into the binding site and acts as a linchpin that stabilizes the RNA complex and activates transcription. A multi-step RNA folding pathway is proposed in which rate-limiting steps contribute to a delay in transcription of the capsid protein-encoding viral subgenomic mRNA. This study provides an exceptional example of the complexity of genome-scale viral regulation and offers new insights into the assembly schemes utilized by large intra-genomic RNA structures.
Assuntos
Genoma Viral/genética , Conformação de Ácido Nucleico , Vírus de RNA/ultraestrutura , Proteínas Virais/genética , Pareamento de Bases , Vírus de RNA/genética , RNA Viral/genética , RNA Viral/ultraestrutura , Tombusvirus/genética , Tombusvirus/ultraestrutura , Transcrição Gênica , Proteínas Virais/ultraestrutura , Replicação Viral/genéticaRESUMO
Plant viruses that contain positive-strand RNA genomes represent an important class of pathogen. The genomes of these viruses harbor RNA sequences and higher-order RNA structures that are essential for the regulation of viral processes during infections. In recent years, it has become increasingly evident that, in addition to locally positioned RNA structures, long-distance intragenomic interactions, involving nucleotide base pairing over large distances, also contribute significantly to the control of various viral events. Viral processes that are modulated by such interactions include genome replication, translation initiation, translational recoding, and subgenomic mRNA transcription. Here, we review the structure and function of different types of long-distance RNA-RNA interactions, herein termed LDRIs, present in members of the family Tombusviridae and other plus-strand RNA plant viruses.
RESUMO
Tobacco necrosis virus (TNV-D) has a plus-strand RNA genome that is neither 5' capped nor 3' poly-adenylated. Instead, it utilizes a 3' cap-independent translational enhancer (3'CITE) located in its 3' untranslated region (UTR) for translation of its proteins. We have examined the protein expression strategies used by TNV-D and our results indicate that: (i) a base pairing interaction between conserved ACCA and UGGU motifs in the genomic 5'UTR and 3'CITE, respectively, is not required for efficient plant cell infection, (ii) similar potential 5'UTR-3'CITE interactions in the two viral subgenomic mRNAs are not needed for efficient translation of viral proteins in vitro, (iii) a small amount of capsid protein is translated from the viral genome by a largely 3'CITE-independent mechanism, (iv) the larger of two possible forms of capsid protein is efficiently translated, and (v) p7b is translated from subgenomic mRNA1 by a leaky scanning mechanism.