Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Cell ; 33(11): ar98, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35731553

RESUMO

Epithelial cell volume regulation is a key component to tissue stability and dynamics. In particular, how cells respond to osmotic stresses is of significant physiological interest in kidney epithelial tissue. For individual mammalian cells, it is well established that Na-K-2Cl cotransporter (NKCC) channels mediate cell volume homeostasis in response to hyperosmotic stress. However, whether mature epithelium responds similarly is not well known. Here we show that while small colonies of madin darby canine kidney (MDCK) epithelial cells behave similarly to single cells and exhibit volume homeostasis that is dependent on the NKCC channel function, mature epithelial tissue does not. Instead, the cell volume decreases by 33% when confluent monolayers or acini formed from MDCK cells are subjected to hyperosmotic stress. We show that the tight junction protein zonula occludins-1 (ZO-1), and Rho-associated kinase (ROCK) are essential for osmotic regulation of cell volume in mature epithelium. Because these both are known to be essential for tight junction assembly, this strongly suggests a role for tight junctions in changing volume response in mature epithelium. Thus, tight junctions act either directly or indirectly in osmotic pressure response of epithelial tissue to suppress volume homeostasis common to isolated epithelial cells.


Assuntos
Células Epiteliais , Junções Íntimas , Animais , Cães , Células Epiteliais/metabolismo , Epitélio/metabolismo , Células Madin Darby de Rim Canino , Mamíferos/metabolismo , Ocludina/metabolismo , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
2.
Curr Biol ; 32(9): 1986-2000.e5, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35381185

RESUMO

Tissue morphogenesis arises from the culmination of changes in cell-cell junction length. Mechanochemical signaling in the form of RhoA underlies these ratcheted contractions, which occur asymmetrically. The underlying mechanisms of asymmetry remain unknown. We use optogenetically controlled RhoA in model epithelia together with biophysical modeling to uncover the mechanism lending to asymmetric vertex motion. Using optogenetic and pharmacological approaches, we find that both local and global RhoA activation can drive asymmetric junction contraction in the absence of tissue-scale patterning. We find that standard vertex models with homogeneous junction properties are insufficient to recapitulate the observed junction dynamics. Furthermore, these experiments reveal a local coupling of RhoA activation with E-cadherin accumulation. This motivates a coupling of RhoA-mediated increases in tension and E-cadherin-mediated adhesion strengthening. We then demonstrate that incorporating this force-sensitive adhesion strengthening into a continuum model is successful in capturing the observed junction dynamics. Thus, we find that a force-dependent intercellular "clutch" at tricellular vertices stabilizes vertex motion under increasing tension and is sufficient to generate asymmetries in junction contraction.


Assuntos
Junções Aderentes , Células Epiteliais , Junções Aderentes/fisiologia , Caderinas/genética , Adesão Celular , Epitélio , Morfogênese
3.
Dev Cell ; 54(1): 3-5, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32634397

RESUMO

In this issue of Developmental Cell, Teo et al. (2020) uncover how caveolae control a PIP2-FMNL2 pathway that regulates tensional homeostasis at cell-cell junctions. They further examine caveolae-mediated tensional dysregulation and its functional consequences in oncogenic cell extrusion.


Assuntos
Cavéolas , Epitélio , Homeostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA