Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
BMC Genomics ; 25(1): 299, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515031

RESUMO

BACKGROUND: Many studies have been performed to identify various genomic loci and genes associated with the meat quality in pigs. However, the full genetic architecture of the trait still remains unclear in part because of the lack of accurate identification of related structural variations (SVs) which resulted from the shortage of target breeds, the limitations of sequencing data, and the incompleteness of genome assemblies. The recent generation of a new pig breed with superior meat quality, called Nanchukmacdon, and its chromosome-level genome assembly (the NCMD assembly) has provided new opportunities. RESULTS: By applying assembly-based SV calling approaches to various genome assemblies of pigs including Nanchukmacdon, the impact of SVs on meat quality was investigated. Especially, by checking the commonality of SVs with other pig breeds, a total of 13,819 Nanchukmacdon-specific SVs (NSVs) were identified, which have a potential effect on the unique meat quality of Nanchukmacdon. The regulatory potentials of NSVs for the expression of nearby genes were further examined using transcriptome- and epigenome-based analyses in different tissues. CONCLUSIONS: Whole-genome comparisons based on chromosome-level genome assemblies have led to the discovery of SVs affecting meat quality in pigs, and their regulatory potentials were analyzed. The identified NSVs will provide new insights regarding genetic architectures underlying the meat quality in pigs. Finally, this study confirms the utility of chromosome-level genome assemblies and multi-omics analysis to enhance the understanding of unique phenotypes.


Assuntos
Genoma , Genômica , Suínos/genética , Animais , Carne/análise , Fenótipo , Cromossomos
2.
PLoS Genet ; 15(10): e1008279, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31603892

RESUMO

Muscle development and lipid accumulation in muscle critically affect meat quality of livestock. However, the genetic factors underlying myofiber-type specification and intramuscular fat (IMF) accumulation remain to be elucidated. Using two independent intercrosses between Western commercial breeds and Korean native pigs (KNPs) and a joint linkage-linkage disequilibrium analysis, we identified a 488.1-kb region on porcine chromosome 12 that affects both reddish meat color (a*) and IMF. In this critical region, only the MYH3 gene, encoding myosin heavy chain 3, was found to be preferentially overexpressed in the skeletal muscle of KNPs. Subsequently, MYH3-transgenic mice demonstrated that this gene controls both myofiber-type specification and adipogenesis in skeletal muscle. We discovered a structural variant in the promotor/regulatory region of MYH3 for which Q allele carriers exhibited significantly higher values of a* and IMF than q allele carriers. Furthermore, chromatin immunoprecipitation and cotransfection assays showed that the structural variant in the 5'-flanking region of MYH3 abrogated the binding of the myogenic regulatory factors (MYF5, MYOD, MYOG, and MRF4). The allele distribution of MYH3 among pig populations worldwide indicated that the MYH3 Q allele is of Asian origin and likely predates domestication. In conclusion, we identified a functional regulatory sequence variant in porcine MYH3 that provides novel insights into the genetic basis of the regulation of myofiber type ratios and associated changes in IMF in pigs. The MYH3 variant can play an important role in improving pork quality in current breeding programs.


Assuntos
Adipogenia/genética , Proteínas do Citoesqueleto/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Miosinas/genética , Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Animais , Cruzamento , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genótipo , Carne , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/genética , Motivos de Nucleotídeos , Sus scrofa/genética , Sus scrofa/metabolismo , Suínos
3.
BMC Genomics ; 22(1): 801, 2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34743693

RESUMO

BACKGROUND: DNA methylation and demethylation at CpG islands is one of the main regulatory factors that allow cells to respond to different stimuli. These regulatory mechanisms help in developing tissue without affecting the genomic composition or undergoing selection. Liver and backfat play important roles in regulating lipid metabolism and control various pathways involved in reproductive performance, meat quality, and immunity. Genes inside these tissue store a plethora of information and an understanding of these genes is required to enhance tissue characteristics in the future generation. RESULTS: A total of 16 CpG islands were identified, and they were involved in differentially methylation regions (DMRs) as well as differentially expressed genes (DEGs) of liver and backfat tissue samples. The genes C7orf50, ACTB and MLC1 in backfat and TNNT3, SIX2, SDK1, CLSTN3, LTBP4, CFAP74, SLC22A23, FOXC1, GMDS, GSC, GATA4, SEMA5A and HOXA5 in the liver, were categorized as differentially-methylated. Subsequently, Motif analysis for DMRs was performed to understand the role of the methylated motif for tissue-specific differentiation. Gene ontology studies revealed association with collagen fibril organization, the Bone Morphogenetic Proteins (BMP) signaling pathway in backfat and cholesterol biosynthesis, bile acid and bile salt transport, and immunity-related pathways in methylated genes expressed in the liver. CONCLUSIONS: In this study, to understand the role of genes in the differentiation process, we have performed whole-genome bisulfite sequencing (WGBS) and RNA-seq analysis of Nanchukmacdon pigs. Methylation and motif analysis reveals the critical role of CpG islands and transcriptional factors binding site (TFBS) in guiding the differential patterns. Our findings could help in understanding how methylation of certain genes plays an important role and can be used as biomarkers to study tissue specific characteristics.


Assuntos
Metilação de DNA , Genoma , Animais , Ilhas de CpG , Fígado/metabolismo , RNA-Seq , Suínos/genética
4.
Asian-Australas J Anim Sci ; 32(12): 1816-1825, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31208168

RESUMO

OBJECTIVE: We tried to analyze allele-specific expression in the pig neocortex using bioinformatic analysis of high-throughput sequencing results from the parental genomes and offspring transcriptomes from reciprocal crosses between Korean Native and Landrace pigs. METHODS: We carried out sequencing of parental genomes and offspring transcriptomes using next generation sequencing. We subsequently carried out genome scale identification of SNPs in two different ways using either individual genome mapping or joint genome mapping of the same breed parents that were used for the reciprocal crosses. Using parent-specific SNPs, allele-specifically expressed genes were analyzed. RESULTS: Because of the low genome coverage (~4x) of the sequencing results, most SNPs were non-informative for parental lineage determination of the expressed alleles in the offspring and were thus excluded from our analysis. Consequently, 436 SNPs covering 336 genes were applicable to measure the imbalanced expression of paternal alleles in the offspring. By calculating the read ratios of parental alleles in the offspring, we identified seven genes showing allele-biased expression (P < 0.05) including three previously reported and four newly identified genes in this study. CONCLUSION: The newly identified allele-specifically expressing genes in the neocortex of pigs should contribute to improving our knowledge on genomic imprinting in pigs. To our knowledge, this is the first study of allelic imbalance using high throughput analysis of both parental genomes and offspring transcriptomes of the reciprocal cross in outbred animals. Our study also showed the effect of the number of informative animals on the genome level investigation of allele-specific expression using RNA-seq analysis in livestock species.

5.
Int J Mol Sci ; 19(10)2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30274168

RESUMO

Myosin heavy chain (MyHC) isoforms consist of Myh7, Myh2, Myh1, and Myh4, which are expressed in skeletal muscle tissues during postnatal development. These genes influence the contraction⁻relaxation activity in skeletal muscles and are involved in determining muscle composition such as the proportion of fast-to-slow and/or slow-to-fast fiber types. Among them, Myh1 is associated with skeletal muscle contraction and is involved in both slow-to-fast and fast-to-slow transition. However, the muscle transition mechanism is not well understood. For this study, we first produced porcine Myh1 transgenic (TG) mice to study whether the ectopic expressed porcine Myh1 gene had any effects on muscle composition, especially on slow-type muscle components. Our results showed that the factors associated with slow muscles, such as Myh7, Myoglobin, Troponin (slow-type units), and cytochrome C, were highly expressed in the quadriceps muscles of Myh1 transgenic mice. Furthermore, the ectopic porcine MYH1 protein was located only in the slow-type muscle fibers of the quadriceps muscles in Myh1 transgenic mice. In physical endurance tests, Myh1 transgenic mice ran longer and further on a treadmill than wild-type (WT) mice. These data fully supported our hypothesis that Myh1 is associated with slow muscle composition, with overexpression of Myh1 in muscle tissues possibly being a new key in modulating muscle fiber types. Our study provides a better understanding of muscle composition metabolism, physical mobility, and genetic factors in muscle fatigue.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Condicionamento Físico Animal , Resistência Física , Animais , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Cadeias Pesadas de Miosina/genética , Suínos
6.
Asian-Australas J Anim Sci ; 31(8): 1098-1102, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29642687

RESUMO

OBJECTIVE: Temperament can be defined as a type of behavioral tendency that appears in a relatively stable manner in responses to various external stimuli over time. The aim of this study was to estimate genetic parameters for the records of temperament testing that are used to improve the temperament of Jeju crossbred (Jeju×Thoroughbred) horses. METHODS: This study was conducted using 205 horses (101 females and 104 males) produced between 2010 and 2015. The experimental animals were imprinted and tamed according to the Manual for Horse Taming and Evaluation for Therapeutic Riding Horses and evaluated according to the categories for temperament testing (gentleness, patience, aggressiveness, sensitivity, and friendliness) between 15 months and 18 months of age. Each category was scored on a five-point linear scale. Genetic parameters for the test categories were analyzed using a multi-trait mixed model with repeated records. The ASReml program was used to analyze the data. RESULTS: The heritability of gentleness, patience, aggressiveness, sensitivity and friendliness ranged from 0.08 to 0.53. The standard errors of estimated heritability ranged from 0.13 to 0.17. The test categories showed high genetic correlations with each other, ranging from 0.96 to 0.99 and high repeatability, ranging from 0.70 to 0.73. CONCLUSION: The results of this study showed that the test categories had moderate heritability and high genetic correlations, but additional studies may be necessary to use the results for the improvement programs of the temperament of Jeju crossbred horses.

8.
Asian-Australas J Anim Sci ; 30(8): 1081-1085, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28111449

RESUMO

OBJECTIVE: Previously, we reported quantitative trait loci (QTLs) affecting backfat thickness (BFT) traits on pig chromosome 5 (SW1482-SW963) in an F2 intercross population between Landrace and Korean native pigs. The aim of this study was to evaluate glutamate receptor-interacting protein 1 (GRIP1) as a positional candidate gene underlying the QTL affecting BFT traits. METHODS: Genotype and phenotype analyses were performed using the 1,105 F2 progeny. A mixed-effect linear model was used to access association between these single nucleotide polymorphism (SNP) markers and the BFT traits in the F2 intercross population. RESULTS: Highly significant associations of two informative SNPs (c.2442 T>C, c.3316 C>G [R1106G]) in GRIP1 with BFT traits were detected. In addition, the two SNPs were used to construct haplotypes that were also highly associated with the BFT traits. CONCLUSION: The SNPs and haplotypes of the GRIP1 gene determined in this study can contribute to understand the genetic structure of BFT traits in pigs.

9.
Asian-Australas J Anim Sci ; 30(8): 1061-1065, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28111443

RESUMO

OBJECTIVE: This study was conducted to locate quantitative trait loci (QTL) influencing fatty acid (FA) composition in a large F2 intercross between Landrace and Korean native pigs. METHODS: Eighteen FA composition traits were measured in more than 960 F2 progeny. All experimental animals were genotyped with 165 microsatellite markers located throughout the pig autosomes. RESULTS: We detected 112 QTLs for the FA composition; Forty seven QTLs reached the genome-wide significant threshold. In particular, we identified a cluster of highly significant QTLs for FA composition on SSC12. QTL for polyunsaturated fatty acid on pig chromosome 12 (F-value = 97.2 under additive and dominance model, nominal p-value 3.6×10-39) accounted for 16.9% of phenotypic variance. In addition, four more QTLs for C18:1, C18:2, C20:4, and monounsaturated fatty acids on the similar position explained more than 10% of phenotypic variance. CONCLUSION: Our findings of a major QTL for FA composition presented here could provide helpful information to locate causative variants to improve meat quality traits in pigs.

10.
Mol Genet Genomics ; 291(2): 831-47, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26606930

RESUMO

Caloric restriction (CR) has been shown to extend the lifespan of many species by improving cellular function and organismal health. Additionally, fat reduction by CR may play an important role in lengthening lifespan and preventing severe age-related diseases. Interestingly, CR induced the greatest transcriptome change in the epididymal fat of mice in our study. In this transcriptome analysis, we identified and categorized 446 genes that correlated with CR level. We observed down-regulation of several signaling pathways, including insulin/insulin-like growth factor 1 (insulin/IGF-1), epidermal growth factor (EGF), transforming growth factor beta (TGF-ß), and canonical wingless-type mouse mammary tumor virus integration site (Wnt). Many genes related to structural features, including extracellular matrix structure, cell adhesion, and the cytoskeleton, were down-regulated, with a strong correlation to the degree of CR. Furthermore, genes related to the cell cycle and adipogenesis were down-regulated. These biological processes are well-identified targets of insulin/IGF-1, EGF, TGF-ß, and Wnt signaling. In contrast, genes involved in specific metabolic processes, including the tricarboxylic acid cycle and the electron transport chain were up-regulated. We performed in silico analysis of the promoter sequences of CR-responsive genes and identified two associated transcription factors, Paired-like homeodomain 2 (Pitx2) and Paired box gene 6 (Pax6). Our results suggest that strict regulation of signaling pathways is critical for creating the optimal energy homeostasis to extend lifespan.


Assuntos
Restrição Calórica , Perfilação da Expressão Gênica/métodos , Longevidade/genética , Transcriptoma/genética , Tecido Adiposo/metabolismo , Animais , Fator de Crescimento Epidérmico/biossíntese , Proteínas do Olho/biossíntese , Regulação da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Fígado/metabolismo , Camundongos , Oxirredução , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/biossíntese , Proteínas Repressoras/biossíntese , Fatores de Transcrição/biossíntese , Fator de Crescimento Transformador beta/biossíntese , Via de Sinalização Wnt , Proteína Homeobox PITX2
11.
Asian-Australas J Anim Sci ; 29(12): 1675-1681, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27492348

RESUMO

The aim of this study was to detect positional candidate genes located within the support interval (SI) regions based on the results of red blood cell, mean corpuscular volume (MCV), and mean corpuscular hemoglobin quantitative trait locus (QTL) in Sus scrofa chromosome 13, and to verify the correlation between specific single-nucleotide polymorphisms (SNPs) located in the exonic region of the positional candidate gene and the three genetic traits. The flanking markers of the three QTL SI regions are SW38 and S0215. Within the QTL SI regions, 44 genes were located, and runt-related transcription factor 1, dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A), and potassium inwardly-rectifying channel, subfamily J, member 15 KCNJ15-which are reported to be related to the hematological traits and clinical features of Down syndrome-were selected as positional candidate genes. The ten SNPs located in the exonic region of the three genes were detected by next generation sequencing. A total of 1,232 pigs of an F2 resource population between Landrace and Korean native pigs were genotyped. To investigate the effects of the three genes on each genotype, a mixed-effect model which is the considering family structure model was used to evaluate the associations between the SNPs and three genetic traits in the F2 intercross population. Among them, the MCV level was highly significant (nominal p = 9.8×10-9) in association with the DYRK1A-SNP1 (c.2989 G

12.
Genet Sel Evol ; 47: 7, 2015 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-25888076

RESUMO

BACKGROUND: We conducted a genome-wide linkage analysis to identify quantitative trait loci (QTL) that influence meat quality-related traits in a large F2 intercross between Landrace and Korean native pigs. Thirteen meat quality-related traits of the m. longissimus lumborum et thoracis were measured in more than 830 F2 progeny. All these animals were genotyped with 173 microsatellite markers located throughout the pig genome, and the GridQTL program based on the least squares regression model was used to perform the QTL analysis. RESULTS: We identified 23 genome-wide significant QTL in eight chromosome regions (SSC1, 2, 6, 7, 9, 12, 13, and 16) (SSC for Sus Scrofa) and detected 51 suggestive QTL in the 17 chromosome regions. QTL that affect 10 meat quality traits were detected on SSC12 and were highly significant at the genome-wide level. In particular, the QTL with the largest effect affected crude fat percentage and explained 22.5% of the phenotypic variance (F-ratio = 278.0 under the additive model, nominal P = 5.5 × 10(-55)). Interestingly, the QTL on SSC12 that influenced meat quality traits showed an obvious trend for co-localization. CONCLUSIONS: Our results confirm several previously reported QTL. In addition, we identified novel QTL for meat quality traits, which together with the associated positional candidate genes improve the knowledge on the genetic structure that underlies genetic variation for meat quality traits in pigs.


Assuntos
Cruzamentos Genéticos , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Carne Vermelha , Sus scrofa/genética , Animais , Ligação Genética , Variação Genética/genética , Genótipo , Repetições de Microssatélites/genética , Fenótipo , Sus scrofa/classificação
13.
BMC Vet Res ; 11: 89, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25889174

RESUMO

BACKGROUND: Meningocele and meningoencephalocele of the skull are congenital deformities. Various species, such as pigs, dogs, and cats, are susceptible to congenital meningocele and meningoencephalocele and the incidence is higher in large white and landrace pigs. CASE PRESENTATION: In this study, swelling was observed in the fontanel areas of the median planes of the skull cap in two female piglets of the same litter. Gross clinical examination, neurological examination, computed tomography (CT), and magnetic resonance imaging (MRI) were conducted on the symptomatic piglets. The gross clinical and neurological examinations revealed no specific findings, except for the swellings. According to the CT results, the length of the defect on the sagittal section of the skull was 4.7 mm in case 1 and 20.62 mm in case 2. Connected flow between the skull swellings and the cerebrospinal fluid (CSF) of the lateral ventricles was observed, and partial herniation was identified in case 2. On MRI, CSF with high T2 signals was identified in the arachnoid spaces between the cerebrum and the cerebellum in the two cases, which is consistent with intracranial hypertension. The size of the swelling formed in the parietal bones was 1.6 × 1.1 × 1.8 cm(3) (case 1) and 1.2 × 1.38 × 1.7 cm(3) (case 2). The increase in intracranial pressure was more obvious in case 2 than in case 1, and was accompanied by posterior displacements of the mesencephalon and cerebellum. CONCLUSIONS: Case 1 was diagnosed as meningocele resulting from meningeal herniation and case 2 was diagnosed as meningoencephalocele caused by brain tissue herniation.


Assuntos
Encefalocele/veterinária , Meningocele/patologia , Doenças dos Suínos/congênito , Animais , Encefalocele/patologia , Feminino , República da Coreia , Suínos , Doenças dos Suínos/patologia
14.
Mol Biol Rep ; 41(11): 7167-73, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25055975

RESUMO

Most reproductive traits have low heritability and are greatly affected by environmental factors. Teat number and litter size are traits related to the reproduction ability of pigs. To identify quantitative trait loci (QTLs) for teat number traits, a genome-wide association study (GWAS) was conducted using an F2 intercross between Landrace and Korean native pigs. Genotype analysis was performed using the porcine SNP 60 K beadchip. The GWAS was performed using a mixed-effects model and linear regression approach. When a genome-wide threshold was determined using the Bonferroni method (P = 1.61 × 10(-6)), 38 single nucleotide polymorphism (SNP) markers in pig chromosome 7 (SSC7) were significantly associated with three teat number traits (total teat number, left teat number, and right teat number). Among these, SNPs in 5 genes (HDDC3, LOC100156276, LOC100155863, ANPEP, SCAMP2) were selected for further study based primarily on their statistical significance. A significant association was detected in SCAMP2 g.25280 G>A for total teat number (P = 2.0 × 10(-12)), HDDC3 g.1319 G>A SNP for left teat number (P = 2.3 × 10(-7)), and SCAMP2 g.14198 G>A for right teat number (P = 4.7 × 10(-12)). These results provide valuable information about the selective breeding for desirable teat numbers in pigs.


Assuntos
Cruzamento/métodos , Hibridização Genética/genética , Glândulas Mamárias Animais/anatomia & histologia , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Sus scrofa/genética , Animais , Cruzamentos Genéticos , Feminino , Estudo de Associação Genômica Ampla , Modelos Lineares , Modelos Genéticos , República da Coreia , Sus scrofa/anatomia & histologia
15.
Mol Biol Rep ; 41(9): 6305-15, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25008993

RESUMO

Pork is a major source of animal protein for humans. The subcutaneous, intermuscular and the intramuscular fat are the factors responsible for meat quality. RNA-seq is rapidly adopted for the profiling of the transcriptomes in the studies related to gene regulation. The discovery of differentially expressed genes (DEGs) between adult animals of Jeju Native Pig (JNP) and Berkshire breeds are of particular interest for the current study. RNA-seq was used to investigate the transcriptome profiling in the fat tissue. Sequence reads were obtained from Ilumina HiSeq2000 and mapped to the pig genome using Tophat2. Total 153 DEGs were identified and 71 among the annotated genes, have BLAST matches in the non- redundant database. Metabolic, immune response and protein binding are enriched pathways in the fat tissue. In our study, biological adhesion, cellular, developmental and multicellular organismal processes in fat were up-regulated in JNP as compare to Berkshire. Multicellular organismal process, developmental process, embryonic morphogenesis and skeletal system development were the most significantly enriched terms in fat of JNP and Berkshire breeds (p = 1.17E-04, 0.044, 3.47E-04 and 4.48E-04 respectively). COL10A1, COL11A2, PDK4 and PNPLA3 genes responsible for skeletal system morphogenesis and body growth were down regulated in JNP. This study is the first statistical analysis for the detection of DEGs from RNA-seq data generated from fat tissue sample. This analysis can be used as stepping stone to understand the difference in the genetic mechanisms that might influence the identification of novel transcripts, sequence polymorphisms, isoforms and noncoding RNAs.


Assuntos
Tecido Adiposo/metabolismo , Perfilação da Expressão Gênica/métodos , RNA/genética , Análise de Sequência de RNA/métodos , Suínos/genética , Animais , Cruzamento , Mapeamento Cromossômico , Regulação para Baixo , Expressão Gênica , Genoma , Metabolismo dos Lipídeos/genética , Anotação de Sequência Molecular , Fosforilação , Ligação Proteica , Transcriptoma , Regulação para Cima
16.
Mol Biol Rep ; 40(1): 73-80, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23124221

RESUMO

Fatty acid (FA) composition is one of the most important parameters for the evaluation of meat quality. The stearoyl-CoA desaturase (SCD) gene is considered a positional candidate gene affecting FA composition in SSC14, based on previous quantitative trait loci studies. To evaluate the association of the SCD gene with FA composition in a Korean native pig × Landrace F(2) intercross population, we genotyped six single nucleotide polymorphisms (SNPs) of the SCD gene located in promoter region [2 SNPs (g.-353T>C, g.-233T>C)], exonic region [1 SNP (g.817C>T) in exon 2] and 3' UTR [3 SNPs (g.13311C>G, g.14384G>A, and g.14424C>T)] identified by massively parallel sequencing technology. Eighteen FA composition traits were measured in more than the 950 F(2) animals. A mixed-effect model was used to evaluate associations between these SNPs and FA composition traits in the F(2) intercross population. A detailed investigation detected that the five FA composition traits [palmitoleic acid (C16:1), stearic acid (C18:0), arachidic acid (C20:0), saturated FA, and unsaturated FA] were highly significant (P < 4.7 × 10(-5); C20:0) in association with the SNP g.-233T>C, SNP g.817C>T, SNP g.13311C>G and SNP g.14384G>A in the SCD gene, whereas SNP g.14424C>T was only significantly associated with palmitoleic acid (C16:1, P = 1.4 × 10(-3)). No significant association of FA composition traits with SNP g.-353T>C was detected. In particular, the SNP g.14384G>A accounted for 30.6 % of the additive genetic variance of palmitoleic acid (P = 1.9 × 10(-10)). These results suggest the SCD gene has a strong effect on FA composition in the crossbred pig population.


Assuntos
Cruzamentos Genéticos , Ácidos Graxos/metabolismo , Estearoil-CoA Dessaturase/genética , Suínos/genética , Alelos , Animais , Feminino , Frequência do Gene , Ordem dos Genes , Genótipo , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único
17.
Anim Genet ; 44(4): 463-6, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23441856

RESUMO

Using a methyl-DNA immunoprecipitation technique in combination with next-generation deep sequencing, we conducted comprehensive DNA methylation profiling of liver genomes from three pig breeds: Berkshire, Duroc and Landrace. The profiles revealed that the distribution patterns of methylation signals along the genome are conserved among the three pig breeds. Specifically, many signals in coding genes were found in introns, and most signals in the repetitive elements were identified in non-long terminal repeat (LTR) retrotransposons such as long and short interspersed repetitive elements, implying a significant association with alternative splicing and expression of retrotransposable elements respectively. Differentially methylated regions among the three pig breeds were identified in the non-LTR retrotransposons, suggesting that they may lead to differential retrotransposable element activity. Altogether, this study provides advanced swine methylome data and valuable resources for understanding the function of DNA methylation in the evolutionary divergence of different pig breeds.


Assuntos
Metilação de DNA/genética , Genoma/genética , Sequências Repetitivas de Ácido Nucleico/genética , Retroelementos/genética , Suínos/genética , Animais , Cruzamento , DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Imunoprecipitação/veterinária , Íntrons/genética , Fígado , Masculino , Análise de Sequência de DNA/veterinária , Suínos/classificação , Sequências Repetidas Terminais/genética
18.
Indian J Biochem Biophys ; 50(3): 237-41, 2013 06.
Artigo em Inglês | MEDLINE | ID: mdl-23898489

RESUMO

The NADPH-dependent reduction activities of two paralogous pig AKR1C1s with and without 19 additional amino acid residues in C-terminus were evaluated against steroid hormones including 5alpha-dihydrotestosterone, testosterone, progesterone, androstenedione and 5alpha-androstane-3.17-dione, which act as substrates of the AKR1C1S. Among the hormones, the AKR1C1s exhibited the highest activity against 5alpha-dihydrotestosterone and the lowest activity against testosterone and progesterone. Furthermore, the AKR1C1s showed the largest differential activities against; 5alpha-dihydrotestosterone, but no such change of activities was found against progestrone and testosterone. These results suggest that the C-terminal region of AKR1C1 plays an important effect in the reduction activities of pig AKR1C1. Thus, the differential activities of two AKR1C1 paralogs observed in the present study provide important insights in understanding the molecular evolution.


Assuntos
20-Hidroxiesteroide Desidrogenases/química , Hormônios Esteroides Gonadais/química , NADP/química , Animais , Ativação Enzimática , Oxirredução , Relação Estrutura-Atividade , Suínos
19.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37925372

RESUMO

Genomic imprinting plays critical roles during the development of mammalian species and underlying epigenetic mechanisms frequently involve long non-coding RNAs (lncRNAs). The paternal transcription of the antisense Igf2r RNA noncoding (Airn) is responsible for paternal silencing of the mouse insulin-like growth factor 2 receptor (Igf2r) gene and maternal Igf2r expression. Although the corresponding maternal DNA methylation imprint is conserved in humans and pigs, the orthologous AIRN lncRNA has been identified in humans but not in pigs. Here, we aimed to examine imprinted allelic expression of the porcine AIRN lncRNA along with a corresponding differentially methylated region (DMR) and to analyze allelic expression of AIRN and IGF2R in pigs. By comparing parthenogenetic and control porcine embryos, we identified a maternally methylated DMR and a significantly higher expression of AIRN lncRNA in control embryos (P < 0.05) indicating its paternal expression. Further analyses revealed that the expression of AIRN lncRNA was enriched in the pig brain and its subregions, and it was monoallelically expressed; whereas, IGF2R was expressed biallelically suggesting an absence of allele-specific transcriptional regulation. Our findings will lead to further investigations into the role of the imprinted porcine AIRN lncRNA during pig development.


Genomic imprinting is important for the development of mammals and long non-coding RNAs are often involved in the imprinting process. In mice, Airn encodes a long non-coding RNA that is imprinted, and therefore, transcribed only from the paternal allele. This paternal transcription of Airn interferes with the adjacent Igf2r promoter, leading to maternal expression of Igf2r. In pigs, the orthologous AIRN has not been identified as well as its imprinting. In the current study, we report porcine AIRN and allelic expression of both AIRN and IGF2R using our parthenogenetic embryo models and various normal pig tissues.


Assuntos
RNA Longo não Codificante , Humanos , Animais , Camundongos , Suínos/genética , RNA Longo não Codificante/genética , Metilação de DNA , Impressão Genômica , Epigênese Genética , Alelos , Mamíferos/genética
20.
J Anim Sci Technol ; 65(3): 511-518, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37332282

RESUMO

This study examined the association between functional sequence variants (FSVs) of myosin heavy chain 3 (MYH3) genotypes and collagen content in a Landrace and Jeju native pig (JNP) crossbred population. Four muscles (Musculus longissimus dorsi, Musculus semimembranosus, Musculus triceps brachii, and Musculus biceps femoris) were used for the analysis of meat collagen content, and the same animals were genotyped for the FSVs of the MYH3 gene by using PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism). Three FSVs of MYH3 genotypes were identified and had genotype frequencies of 0.358, 0.551, and 0.091 for QQ, Qq, and qq, respectively. QQ animals for the FSVs of the MYH3 genotypes showed higher collagen content in their M. longissimus dorsi (p < 0.001), M. semimembranosus (p < 0.001), M. triceps brachii (p < 0.001), and M. biceps femoris (p < 0.001) than qq homozygous animals. After the validation of this result in other independent populations, the FSVs of MYH3 genotypes can be a valuable genetic marker for improving collagen content in porcine muscles and can also be applied to increase the amount of collagen for biomedical purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA