Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(17): 176302, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37172259

RESUMO

We experimentally demonstrate boosted in-plane thermal conduction by surface plasmon polaritons (SPPs) propagating along a thin Ti film on a glass substrate. Due to the lossy nature of metal, SPPs can propagate over centimeter-scale distances even along a supported metal film, and the resulting ballistic heat conduction can be quantitatively validated. Further, for a 100-nm-thick Ti film on a glass substrate, a significant enhancement of in-plane thermal conductivity compared to bulk value (∼25%) is experimentally shown. This Letter will provide a new avenue to employ SPPs for heat dissipation along a supported thin film, which can be readily applied to mitigate hot-spot issues in microelectronics.

2.
Small ; 17(38): e2102128, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34390187

RESUMO

The trade-off between thermal conductivity (κ) and thermal contact resistance (Rc ) is regarded as a hurdle to develop superior interface materials for thermal management. Here a high-temperature skin softening material to overcome the trade-off relationship, realizing a record-high total thermal conductance (254.92 mW mm-2 K-1 ) for isotropic pad-type interface materials is introduced. A highly conductive hard core is constructed by incorporating Ag flakes and silver nanoparticle-decorated multiwalled carbon nanotubes in thermosetting epoxy (EP). The thin soft skin is composed of filler-embedded thermoplastic poly(ethylene-co-vinyl acetate) (PEVA). The κ (82.8 W m-1 K-1 ) of the PEVA-EP-PEVA interface material is only slightly compromised, compared with that (106.5 W m-1 K-1 ) of the EP core (386 µm). However, the elastic modulus (E = 2.10 GPa) at the skin is significantly smaller than the EP (26.28 GPa), enhancing conformality and decreasing Rc from 108.41 to 78.73 mm2 K W-1 . The thermoplastic skin is further softened at an elevated temperature (100 °C), dramatically decreasing E (0.19 GPa) and Rc (0.17 mm2 K W-1 ) with little change in κ, overcoming the trade-off relationship and enhancing the total thermal conductance by 2030%. The successful heat dissipation and applicability to the continuous manufacturing process demonstrate excellent feasibility as future thermal management materials.


Assuntos
Nanopartículas Metálicas , Nanotubos de Carbono , Temperatura Alta , Prata , Temperatura , Condutividade Térmica
3.
Nat Mater ; 14(2): 136-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25613710
4.
Mater Horiz ; 8(7): 1998-2005, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846476

RESUMO

Thermal rectification is a direction-dependent asymmetric heat transport phenomenon. Here we report the tunable solid-state thermal rectification by asymmetric nonlinear far-field radiation. The asymmetry in thermal conductivity and emissivity of a three-terminal device is realized by sputtering a thin metal film (radiation barrier: niobium, copper, or silver) on the top right half of a polyethylene terephthalate strip (emitter). Both the experiment and finite element analysis are in excellent agreement, revealing a thermal rectification ratio (TR) of 13.0% for the niobium-deposited specimen. The simulation demonstrates that the TR can be further increased to 74.5% by tuning asymmetry in thermal conductivity, emissivity, and surface area. The rectification can also be actively controlled, by gating the environmental temperature, resulting in a maximum TR of 93.1%. This work is applicable for a wide range of temperatures and device sizes, which may find applications in on-demand heat control and thermal logic gates.

5.
ACS Appl Mater Interfaces ; 12(33): 37784-37792, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32705870

RESUMO

Thermal management problems in high-power flexible electronics are exacerbated by the design complexity and requirement of stringent temperature control to prevent skin burns. Thus, effective heat dissipation methods applicable to flexible electronics on polymer substrates are an essential device design component. Accordingly, this study investigates the pool boiling heat transfer characteristics and potential enhancements, enabled by laser-induced graphene (LIG), which is both highly porous and bendable. Patterned LIG with a mesh spacing of 200 µm was formed on flexible polyimide substrates by laser direct writing, and the resulting surfaces exhibited enhanced heat transfer characteristics. Pool boiling experiments were conducted with an FC-72 working fluid to investigate the heat removal capability of LIG, and its performance was further improved by separating the liquid supply passages from the vapor escape routes. Overall, the inclusion of LIG resulted in a 2- to 3-fold increase in both the critical heat flux (33.6 W/cm2) and heat transfer coefficient (7.6 kW/(m2·K)), compared to pristine polyimide films.

6.
Int Neurourol J ; 22(Suppl 3): S156-164, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30396265

RESUMO

PURPOSE: Maternal lipopolysaccharide (LPS) injection induces neurodevelopmental disorders, such as cerebral palsy. Exercise activates phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway that enhances neurogenesis. Wnt ligands are also implicated in the hippocampal neurogenesis and synaptic plasticity. Glycogen synthase kinase-3ß (GSK-3ß) is a downstream molecule of Akt, and GSK-3ß is known to modulate hippocampal neurogenesis negatively. METHODS: Cerebral palsy was made by maternal LPS-injection. On the 5 weeks after birth, treadmill running was applied to the rat pups of the exercise groups, for 30 minutes, 5 times a week during 6 weeks. RESULTS: Treadmill running alleviated short-term memory impairments of the cerebral palsy rat pups. Hippocampal cell proliferation was increased and hippocampal apoptosis was suppressed by treadmill running in the cerebral palsy rat pups. Hippocampal phosphorylated-PI3K/PI3K ratio, phosphorylated-Akt/Akt ratio, and Wnt expression were enhanced by treadmill running in the cerebral palsy rat pups. In contrast, hippocampal phosphorylated-GSK-3ß/GSK-3ß ratio and ß-catenin expression were suppressed by treadmill running in the cerebral palsy rat pups. CONCLUSION: The results of this study showed that short-term memory improvement due to treadmill running in cerebral palsy occurs via activation of the PI3K-Akt-Wnt pathway.

7.
ACS Appl Mater Interfaces ; 9(35): 30100-30106, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28786284

RESUMO

The heat flow at the interfaces of complex nanostructures is three-dimensional in part due to the nonplanarity of interfaces. One example common in nanosystems is the situation when a significant fraction of the interfacial area is composed of sidewalls that are perpendicular to the principal plane, for example, in metallization structures for complementary metal-oxide semiconductor transistors. It is often observed that such sidewall interfaces contain significantly higher levels of microstructural disorder, which impedes energy carrier transport and leads to effective increases in interfacial resistance. The impact of these sidewall interfaces needs to be explored in greater depth for practical device engineering, and a related problem is that appropriate characterization techniques are not available. Here, we develop a novel electrothermal method and an intricate microfabricated structure to extract the thermal resistance of a sidewall interface between aluminum and silicon dioxide using suspended nanograting structures. The thermal resistance of the sidewall interface is measured to be ∼16 ± 5 m2 K GW-1, which is twice as large as the equivalent horizontal planar interface comprising the same materials in the experimental sample. The rough sidewall interfaces are observed using transmission electron micrographs, which may be more extensive than at interfaces in the substrate plan in the same nanostructure. A model based on a two-dimensional sinusoidal surface estimates the impact of the roughness on thermal resistance to be ∼2 m2 K GW-1. The large disparity between the model predictions and the experiments is attributed to the incomplete contact at the Al-SiO2 sidewall interfaces, inferred by observation of underetching of the silicon substrate below the sidewall opening. This study suggests that sidewall interfaces must be considered separately from planar interfaces in thermal analysis for nanostructured systems.

8.
J Exerc Rehabil ; 13(6): 627-633, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29326893

RESUMO

Social isolation is known to induce emotional and behavioral changes in animals and humans. The effect of treadmill exercise on depression was investigated using social isolated rat pups. The rat pups in the social isolation groups were housed individually. The rat pups in the exercise groups were forced to run on treadmill for 30 min once a day from postnatal day 21 to postnatal day 34. In order to evaluate depression state of rat pups, forced swimming test was performed. Newly generated cells in the hippocampal dentate gyrus were determined by 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry. We examined the expression of 5-hydroxytryptamine (5-HT) and tryptophan hydroxylase (TPH) in the dorsal raphe using immunofluorescence. The expression of brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) was detected by Western blot analysis. The present results demonstrated that social isolation increased resting time and decreased mobility time. Expression of 5-HT and TPH in the dorsal raphe and expression of BDNF and TrkB in the hippocampus were decreased by social isolation. The number of BrdU-positive cells in the hippocampal dentate gyrus was suppressed by social isolation. Treadmill exercise decreased resting time and increased mobility in the social isolated rat pups. Expression of 5-HT, TPH, BDNF, and TrkB was increased by treadmill exercise. The present results suggested that treadmill exercise may ameliorates social isolation-induced depression through increasing neuronal generation.

9.
Sci Rep ; 7(1): 6233, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740212

RESUMO

Here we study single-crystalline silicon nanobeams having 470 nm width and 80 nm thickness cross section, where we produce tortuous thermal paths (i.e. labyrinths) by introducing slits to control the impact of the unobstructed "line-of-sight" (LOS) between the heat source and heat sink. The labyrinths range from straight nanobeams with a complete LOS along the entire length to nanobeams in which the LOS ranges from partially to entirely blocked by introducing slits, s = 95, 195, 245, 295 and 395 nm. The measured thermal conductivity of the samples decreases monotonically from ~47 W m-1 K-1 for straight beam to ~31 W m-1 K-1 for slit width of 395 nm. A model prediction through a combination of the Boltzmann transport equation and ab initio calculations shows an excellent agreement with the experimental data to within ~8%. The model prediction for the most tortuous path (s = 395 nm) is reduced by ~14% compared to a straight beam of equivalent cross section. This study suggests that LOS is an important metric for characterizing and interpreting phonon propagation in nanostructures.

10.
J Exerc Rehabil ; 9(3): 348-53, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278883

RESUMO

Diabetic retinopathy is one of the most important microvascular complications in diabetes, and it is the major cause of visual loss. Physical exercise is known to ameliorate the symptoms of metabolic syndromes such as diabetic mellitus. In the present study, we investigated the effects of treadmill exercise on vascular endothelial growth factor (VEGF) expression and apoptotic cell death in the retinas of streptozotocin (STZ)-induced diabetic rats. The male Sprague-Dawley rats were randomly divided into three groups (n = 10 in each group): control group, STZ-induce diabetes group, STZ-induced diabetes and treadmill exercise group. To induce diabetes in the experimental animals, a single intraperitioneal injection of STZ (50 mg/kg) was given to each animal. The rats in the exercise group were forced to run on a motorized treadmill for 30 min once a day during 1 week starting 6 weeks after STZ injection. In the present results, VEGF expression in the retinas was increased by induction of diabetes. The numbers of caspase-3-positive and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells in the retinas were also enhanced by induction of diabetes. Treadmill exercise significantly decreased VEGF expression and suppressed the number of TUNEL-positive and caspase-3-positive cells in the retinas of diabetic rats. In the present study, we have shown that treadmill exercise might alleviate the progression of diabetic retinopathy through suppressing VEGF expression and apoptotic cell death in the retinas of the diabetic rats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA