Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Am Chem Soc ; 145(28): 15360-15369, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37428820

RESUMO

Azetidines are prominent structural scaffolds in bioactive molecules, medicinal chemistry, and ligand design for transition metals. However, state-of-the-art methods cannot be applied to intramolecular hydroamination of allylic amine derivatives despite their underlying potential as one of the most prevalent synthetic precursors to azetidines. Herein, we report an electrocatalytic method for intramolecular hydroamination of allylic sulfonamides to access azetidines for the first time. The merger of cobalt catalysis and electricity enables the regioselective generation of key carbocationic intermediates, which could directly undergo intramolecular C-N bond formation. The mechanistic investigations including electrochemical kinetic analysis suggest that either the catalyst regeneration by nucleophilic cyclization or the second electrochemical oxidation to access the carbocationic intermediate is involved in the rate-determining step (RDS) of our electrochemical protocol and highlight the ability of electrochemistry in providing ideal means to mediate catalyst oxidation.

2.
J Am Chem Soc ; 145(4): 2152-2160, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657026

RESUMO

Electrocatalytic CO2 reduction reaction (CO2RR) is greatly facilitated by Au surfaces. However, large fractions of underlying Au atoms are generally unused during the catalytic reaction, which limits mass activity. Herein, we report a strategy for preparing efficient electrocatalysts with high mass activities by the atomic-level transplantation of Au active sites into a Ni4 nanocluster (NC). While the Ni4 NC exclusively produces H2, the Au-transplanted NC selectively produces CO over H2. The origin of the contrasting selectivity observed for this NC is investigated by combining operando and theoretical studies, which reveal that while the Ni sites are almost completely blocked by the CO intermediate in both NCs, the Au sites act as active sites for CO2-to-CO electroreduction. The Au-transplanted NC exhibits a remarkable turnover frequency and mass activity for CO production (206 molCO/molNC/s and 25,228 A/gAu, respectively, at an overpotential of 0.32 V) and high durability toward the CO2RR over 25 h.

3.
Inorg Chem ; 62(26): 10279-10290, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37342900

RESUMO

The catalytic redox activity of Cu(II) bound to the amino-terminal copper and nickel (ATCUN) binding motif (Xxx-Zzz-His, XZH) is stimulating the development of catalytic metallodrugs based on reactive oxygen species (ROS)-mediated biomolecule oxidation. However, low Cu(I) availability resulting from the strong Cu(II) binding affinity of the ATCUN motif is regarded as a limitation to efficient ROS generation. To address this, we replaced the imidazole moiety (pKa 7.0) of Gly-Gly-His-NH2 (GGHa, a canonical ATCUN peptide) with thiazole (pKa 2.7) and oxazole (pKa 0.8), yielding GGThia and GGOxa, respectively. A newly synthesized amino acid, Fmoc-3-(4-oxazolyl)-l-alanine, served as a histidine surrogate featuring an azole ring with the lowest pKa among known analogues. Despite similar square-planar Cu(II)-N4 geometries being observed for the three Cu(II)-ATCUN complexes by electron paramagnetic resonance spectroscopy and X-ray crystallography, the azole modification enabled the Cu(II)-ATCUN complexes to exhibit significant rate enhancement for ROS-mediated DNA cleavage. Further analyses based on Cu(I)/Cu(II) binding affinities, electrochemical measurements, density functional theory calculations, and X-ray absorption spectroscopy indicated that the azole modification enhanced the accessibility of the Cu(I) oxidation state during ROS generation. Our oxazole/thiazole-containing ATCUN motifs provide a new design strategy for peptide ligands with modulated N donor ability, with potential applications in the development of ROS-mediated metallodrugs.


Assuntos
Cobre , Histidina , Espécies Reativas de Oxigênio/metabolismo , Cobre/química , Oxazóis/farmacologia , Peptídeos
4.
Angew Chem Int Ed Engl ; 62(19): e202219227, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36802126

RESUMO

Single-atom catalysts (SACs) are appealing next-generation catalysts for various electrochemical technologies. Along with significant breakthroughs in their initial activity, SACs now face the next challenge for their viable applications, insufficient operational stability. In this Minireview, we summarize the current knowledge of SAC degradation mechanisms mainly based on Fe-N-C SACs, some of the most investigated SACs. Recent studies on isolated metal, ligand, and support degradations are introduced, and the underlying fundamentals of each degradation path are categorized into active site density (SD) and turnover frequency (TOF) losses. Finally, we discuss the challenges and prospects for the future outlook of stable SACs.

5.
J Am Chem Soc ; 143(2): 925-933, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33410693

RESUMO

Electrocatalytic conversion of CO2 into value-added products offers a new paradigm for a sustainable carbon economy. For active CO2 electrolysis, the single-atom Ni catalyst has been proposed as promising from experiments, but an idealized Ni-N4 site shows an unfavorable energetics from theory, leading to many debates on the chemical nature responsible for high activity. To resolve this conundrum, here we investigated CO2 electrolysis of Ni sites with well-defined coordination, tetraphenylporphyrin (N4-TPP) and 21-oxatetraphenylporphyrin (N3O-TPP). Advanced spectroscopic and computational studies revealed that the broken ligand-field symmetry is the key for active CO2 electrolysis, which subordinates an increase in the Ni redox potential yielding NiI. Along with their importance in activity, ligand-field symmetry and strength are directly related to the stability of the Ni center. This suggests the next quest for an activity-stability map in the domain of ligand-field strength, toward a rational ligand-field engineering of single-atom Ni catalysts for efficient CO2 electrolysis.

6.
J Am Chem Soc ; 142(36): 15496-15504, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32794757

RESUMO

Single-atom catalysts (SACs) have quickly emerged as a new class of catalytic materials. When confronted with classical carbon-supported nanoparticulated catalysts (Pt/C), SACs are often claimed to have superior electrocatalytic properties, e.g., stability. In this study, we critically assess this statement by investigating S-doped carbon-supported Pt SACs as a representative example of noble-metal-based SACs. We use a set of complementary techniques, which includes online inductively coupled plasma mass spectrometry (online ICP-MS), identical location transmission electron microscopy (IL-TEM), and X-ray photoelectron spectroscopy (XPS). It is shown by online ICP-MS that the dissolution behavior of as-synthesized Pt SACs is significantly different from that of metallic Pt/C. Moreover, Pt SACs are, indeed, confirmed to be more stable toward Pt dissolution. When cycled to potentials of up to 1.5 VRHE, however, the dissolution profiles of Pt SACs and Pt/C become similar. IL-TEM and XPS show that this transition is due to morphological and chemical changes caused by cycling. The latter, in turn, is a consequence of the relatively poor stability of S ligands. As monitored by online ICP-MS and XPS, significant amounts of sulfur leave the catalyst during oxidation. Hence, in case catalysts with improved stability in the anodic potential region are desired, more robust supports and ligands must be developed.

7.
J Am Chem Soc ; 141(45): 18256-18263, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31621315

RESUMO

The free energy of H adsorption (ΔGH) on a metallic catalyst has been taken as a descriptor to predict the hydrogen evolution reaction (HER) kinetics but has not been well applied in alkaline media. To assess this, we prepare Pd@Pt and PdH@Pt core-shell octahedra enclosed by Pt(111) facets as model catalysts for controlling the ΔGH affected by the ligand, the strain, and their ensemble effects. The Pt shell thickness is adjusted from 1 to 5 atomic layers by varying the amount of Pt precursor added during synthesis. In an alkaline electrolyte, the HER activity of core-shell models is improved either by the construction of core-shell structures or by the increased number of Pt shells. These experimental results are in good agreement with the ΔGH values calculated by the first-principles density functional theory with a complex surface strained core-shell slab model. However, enhanced HER activities of Pd@Pt and PdH@Pt core-shell nanocrystals over the Pt catalyst are inconsistent with the thermodynamic ΔGH scaling relationship only but can be explained by the work function and apparent ΔGH models that predict the interfacial electric field for the HER.

8.
J Am Chem Soc ; 140(47): 16198-16205, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30383962

RESUMO

Carbon monoxide is widely known to poison Pt during heterogeneous catalysis owing to its strong donor-acceptor binding ability. Herein, we report a counterintuitive phenomenon of this general paradigm when the size of Pt decreases to an atomic level, namely, the CO-promoting Pt electrocatalysis toward hydrogen evolution reactions (HER). Compared to pristine atomic Pt catalyst, reduction current on a CO-modified catalyst increases significantly. Operando mass spectroscopy and electrochemical analyses demonstrate that the increased current arises due to enhanced H2 evolution, not additional CO reduction. Through structural identification of catalytic sites and computational analysis, we conclude that CO-ligation on the atomic Pt facilitates Hads formation via water dissociation. This counterintuitive effect exemplifies the fully distinct characteristics of atomic Pt catalysts from those of bulk Pt, and offers new insights for tuning the activity of similar classes of catalysts.

9.
Angew Chem Int Ed Engl ; 56(30): 8809-8812, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28570025

RESUMO

Fe-N-C catalysts with high O2 reduction performance are crucial for displacing Pt in low-temperature fuel cells. However, insufficient understanding of which reaction steps are catalyzed by what sites limits their progress. The nature of sites were investigated that are active toward H2 O2 reduction, a key intermediate during indirect O2 reduction and a source of deactivation in fuel cells. Catalysts comprising different relative contents of FeNx Cy moieties and Fe particles encapsulated in N-doped carbon layers (0-100 %) show that both types of sites are active, although moderately, toward H2 O2 reduction. In contrast, N-doped carbons free of Fe and Fe particles exposed to the electrolyte are inactive. When catalyzing the ORR, FeNx Cy moieties are more selective than Fe particles encapsulated in N-doped carbon. These novel insights offer rational approaches for more selective and therefore more durable Fe-N-C catalysts.

10.
Langmuir ; 31(1): 542-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25517201

RESUMO

A template-free synthesis method for mesoporous and macro-/mesoporous hierarchically porous silicates with remarkable structural tunability and complexity is presented. SiO2 nanocolloids having diameters of 3.0-29 nm were prepared as a primary building block by using extended Stöber synthesis, and they were subsequently assembled by an aerosol-assisted drying. The silica pore structure can be rationally controlled depending on the initial diameter of SiO2 colloids and the aerosol-assembly temperature that determines the packing density of SiO2 colloids (i.e., amounts of packing defects) in the resultant materials. The present method could produce mesoporous silica spheres with remarkable pore-structural tunability (291 < BET surface area <807 m(2) g(-1), 0.42 < pore volume <0.92 cm(3) g(-1), 3.1 < pore size <26 nm). Hierarchically porous materials can also be synthesized by the evaporation-induced phase separation of solvent medium during the aerosol-assisted assembly of SiO2 colloids. By adding aluminum and Pt precursors into the SiO2 colloid suspensions before the aerosol-assisted assembly, mesoporous aluminosilicates supporting uniform Pt nanoclusters (∼2 nm) can also be synthesized. This indicates that the synthesis strategy can be used for the direct synthesis of functional silicate materials.


Assuntos
Nanotecnologia/métodos , Silicatos/química , Dióxido de Silício/química , Aerossóis , Coloides , Metais/química , Nanotecnologia/economia , Porosidade , Volatilização
11.
Angew Chem Int Ed Engl ; 54(43): 12753-7, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26314711

RESUMO

Fundamental understanding of non-precious metal catalysts for the oxygen reduction reaction (ORR) is the nub for the successful replacement of noble Pt in fuel cells and, therefore, of central importance for a technological breakthrough. Herein, the degradation mechanisms of a model high-performance Fe-N-C catalyst have been studied with online inductively coupled plasma mass spectrometry (ICP-MS) and differential electrochemical mass spectroscopy (DEMS) coupled to a modified scanning flow cell (SFC) system. We demonstrate that Fe leaching from iron particles occurs at low potential (<0.7 V) without a direct adverse effect on the ORR activity, while carbon oxidation occurs at high potential (>0.9 V) with a destruction of active sites such as FeNx Cy species. Operando techniques combined with identical location-scanning transmission electron spectroscopy (IL-STEM) identify that the latter mechanism leads to a major ORR activity decay, depending on the upper potential limit and electrolyte temperature. Stable operando potential windows and operational strategies are suggested for avoiding degradation of Fe-N-C catalysts in acidic medium.

12.
J Am Chem Soc ; 136(25): 9070-7, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24905892

RESUMO

N-doped carbon materials are considered as next-generation oxygen reduction reaction (ORR) catalysts for fuel cells due to their prolonged stability and low cost. However, the underlying mechanism of these catalysts has been only insufficiently identified, preventing the rational design of high-performing catalysts. Here, we show that the first electron is transferred into O2 molecules at the outer Helmholtz plane (ET-OHP) over a long range. This is in sharp contrast to the conventional belief that O2 adsorption must precede the ET step and thus that the active site must possess as good an O2 binding character as that which occurs on metallic catalysts. Based on the ET-OHP mechanism, the location of the electrode potential dominantly characterizes the ORR activity. Accordingly, we demonstrate that the electrode potential can be elevated by reducing the graphene size and/or including metal impurities, thereby enhancing the ORR activity, which can be transferred into single-cell operations with superior stability.

13.
Adv Sci (Weinh) ; 11(10): e2306089, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145332

RESUMO

Atomically precise metal nanoclusters (NCs) have emerged as a promising frontier in the field of electrochemical CO2 reduction reactions (CO2 RR) because of their distinctive catalytic properties. Although numerous metal NCs are developed for CO2 RR, their use in practical applications has suffered from their low-yield synthesis and insufficient catalytic activity. In this study, the large-scale synthesis and electrocatalytic performance of ClAg14 (C≡Ct Bu)12 + NCs, which exhibit remarkable efficiency in catalyzing CO2 -to-CO electroreduction with a CO selectivity of over 99% are reported. The underlying mechanisms behind this extraordinary CO2 RR activity of ClAg14 (C≡Ct Bu)12 + NCs are investigated by a combination of electrokinetic and theoretical studies. These analyses reveal that different active sites, generated through electrochemical activation, have unique adsorption properties for the reaction intermediates, leading to enhanced CO2 RR and suppressed hydrogen production. Furthermore, industrially relevant CO2 -to-CO electroreduction using ClAg14 (C≡Ct Bu)12 + NCs in a zero-gap CO2 electrolyzer, achieving high energy efficiency of 51% and catalyst activity of over 1400 A g-1 at a current density of 400 mA cm-2 is demonstrated.

14.
Chemistry ; 19(25): 8190-8, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23613263

RESUMO

Improving the electrocatalytic activity and durability of Pt-based catalysts with low Pt content toward the oxygen reduction reaction (ORR) is one of the main challenges in advancing the performance of polymer electrolyte membrane fuel cells (PEMFCs). Herein, a designed synthesis of well-defined Pd@Pt core-shell nanoparticles (NPs) with a controlled Pt shell thickness of 0.4-1.2 nm by a facile wet chemical method and their electrocatalytic performances for ORR as a function of shell thickness are reported. Pd@Pt NPs with predetermined structural parameters were prepared by in situ heteroepitaxial growth of Pt on as-synthesized 6 nm Pd NPs without any sacrificial layers and intermediate workup processes, and thus the synthetic procedure for the production of Pd@Pt NPs with well-defined sizes and shell thicknesses is greatly simplified. The Pt shell thickness could be precisely controlled by adjusting the molar ratio of Pt to Pd. The ORR performance of the Pd@Pt NPs strongly depended on the thickness of their Pt shells. The Pd@Pt NPs with 0.94 nm Pt shells exhibited enhanced specific activity and higher durability compared to other Pd@Pt NPs and commercial Pt/C catalysts. Testing Pd@Pt NPs with 0.94 nm Pt shells in a membrane electrode assembly revealed a single-cell performance comparable with that of the Pt/C catalyst despite their lower Pt content, that is the present NP catalysts can facilitate low-cost and high-efficient applications of PEMFCs.

15.
Phys Chem Chem Phys ; 15(6): 1802-5, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23262967

RESUMO

Phosphorus and/or sulfur are additionally doped into N-doped carbon (NDC) using phosphoric acid and cysteine. The resulting catalysts demonstrate excellent oxygen reduction activities coupled with high stabilities in acidic media. Specially, additional S-doping in NDC reveals nearly 2.5 times higher activity than that of NDC at 0.75 V (vs. RHE).

16.
JACS Au ; 3(1): 105-112, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36711079

RESUMO

Securing the electrochemical durability of noble metal platinum is of central importance for the successful implementation of a proton exchange membrane fuel cell (PEMFC). Pt dissolution, a major cause of PEMFC degradation, is known to be a potential-dependent transient process, but its underlying mechanism is puzzling. Herein, we elucidate a chemical Pt dissolution process that can occur in various electrocatalytic conditions. This process intensively occurs during potential perturbations with a millisecond timescale, which has yet to be seriously considered. The open circuit potential profiles identify the dominant formation of metastable Pt species at such short timescales and their simultaneous dissolution. Considering on these findings, a proof-of-concept strategy for alleviating chemical Pt dissolution is further studied by tuning electric double layer charging. These results suggest that stable Pt electrocatalysis can be achieved if rational synthetic or systematic strategies are further developed.

17.
Nat Commun ; 14(1): 3233, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270530

RESUMO

Platinum single-atom catalysts hold promise as a new frontier in heterogeneous electrocatalysis. However, the exact chemical nature of active Pt sites is highly elusive, arousing many hypotheses to compensate for the significant discrepancies between experiments and theories. Here, we identify the stabilization of low-coordinated PtII species on carbon-based Pt single-atom catalysts, which have rarely been found as reaction intermediates of homogeneous PtII catalysts but have often been proposed as catalytic sites for Pt single-atom catalysts from theory. Advanced online spectroscopic studies reveal multiple identities of PtII moieties on the single-atom catalysts beyond ideally four-coordinated PtII-N4. Notably, decreasing Pt content to 0.15 wt.% enables the differentiation of low-coordinated PtII species from the four-coordinated ones, demonstrating their critical role in the chlorine evolution reaction. This study may afford general guidelines for achieving a high electrocatalytic performance of carbon-based single-atom catalysts based on other d8 metal ions.

18.
Phys Chem Chem Phys ; 14(19): 6842-8, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22495246

RESUMO

Electrochemical properties of Pd-Mn3O4 nanoparticles toward oxygen reduction reaction (ORR) in acidic media were investigated. The catalysts were prepared by polyol reduction of Pd(acac)2 and thermal decomposition of Mn2(CO)10. Surface composition and structure of the particles vary depending on the injection temperature of Mn2(CO)10 and are closely related to the electrochemical properties. The presence of Mn3O4 promotes the performance towards ORR by facilitating oxygen transfer to the active sites of Pd. Through an accelerated degradation test (ADT), nanoparticles with a Pd-rich shell are obtained by dissolution of surface exposed Mn3O4 and at 0.57 V (vs. Ag/AgCl) this catalyst shows the highest activity towards ORR, 149% in mass activity and 142% in specific activity compared to that of Pd/C.

19.
Nat Commun ; 13(1): 174, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013347

RESUMO

To design electrochemical interfaces for efficient electric-chemical energy interconversion, it is critical to reveal the electric double layer (EDL) structure and relate it with electrochemical activity; nonetheless, this has been a long-standing challenge. Of particular, no molecular-level theories have fully explained the characteristic two peaks arising in the potential-dependence of the EDL capacitance, which is sensitively dependent on the EDL structure. We herein demonstrate that our first-principles-based molecular simulation reproduces the experimental capacitance peaks. The origin of two peaks emerging at anodic and cathodic potentials is unveiled to be an electrosorption of ions and a structural phase transition, respectively. We further find a cation complexation gradually modifies the EDL structure and the field strength, which linearly scales the carbon dioxide reduction activity. This study deciphers the complex structural response of the EDL and highlights its catalytic importance, which bridges the mechanistic gap between the EDL structure and electrocatalysis.

20.
Nanomicro Lett ; 14(1): 209, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36315297

RESUMO

A rational regulation of the solar water splitting reaction pathway by adjusting the surface composition and phase structure of catalysts is a substantial approach to ameliorate the sluggish reaction kinetics and improve the energy conversion efficiency. In this study, we demonstrate a nanocrystalline iron pyrophosphate (Fe4(P2O7)3, FePy)-regulated hybrid overlayer with amorphous iron phosphate (FePO4, FePi) on the surface of metal oxide nanostructure with boosted photoelectrochemical (PEC) water oxidation. By manipulating the facile electrochemical surface treatment followed by the phosphating process, nanocrystalline FePy is localized in the FePi amorphous overlayer to form a heterogeneous hybrid structure. The FePy-regulated hybrid overlayer (FePy@FePi) results in significantly enhanced PEC performance with long-term durability. Compared with the homogeneous FePi amorphous overlayer, FePy@FePi can improve the charge transfer efficiency more significantly, from 60% of FePi to 79% of FePy@FePi. Our density-functional theory calculations reveal that the coexistence of FePi and FePy phases on the surface of metal oxide results in much better oxygen evolution reaction kinetics, where the FePi was found to have a typical down-hill reaction for the conversion from OH* to O2, while FePy has a low free energy for the formation of OH*.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA