Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(11): 18958-18971, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859041

RESUMO

Focused vector beams (VBs) are important topic in the areas of light field manipulation. Geometric metasurfaces provide a convenient platform to facilitate the generation of focused VBs. In this study, we propose a dielectric geometric metasurface to generate multichannel focused higher-order Poincaré sphere (HOP) beams. With identical meta-atoms of half-wave plate, the metasurface comprises two sub-metasurfaces, and each of them includes two sets of rings related to Fresnel zones. For meta-atoms on each set of rings, the hyperbolic geometric phase profile is configured so that the mirror-symmetrical position-flip of the off-axis focal point is enabled under the chirality switch of the illuminating circular polarization. With the design of helical geometric phase profiles for the two sets of rings, a sub-metasurface generate two HOP beams at the symmetrical two focal points. The performance of the two sub-metasurfaces enables the metasurface with four sets of rings to generate the array of four HOP beams. The proposed method was validated by theoretical analyses, numerical simulation and experimental conduction. This research would be significant in miniaturizing and integrating optical systems involving applications of VB generations and applications.

2.
Nano Lett ; 23(9): 3921-3928, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37102437

RESUMO

Twisted photons can in principle carry a discrete unbounded amount of orbital angular momentum (OAM), which are of great significance for quantum communication and fundamental tests of quantum theory. However, the methods for characterization of the OAM quantum states present a fundamental limit for miniaturization. Metasurfaces can exploit new degrees of freedom to manipulate optical fields beyond the capabilities of bulk optics, opening a broad range of novel and superior applications in quantum photonics. Here we present a scheme to reconstruct the density matrix of the OAM quantum states of single photons with all-dielectric metasurfaces composed of birefringent meta-atoms. We have also measured the Schmidt number of the OAM entanglement by the multiplexing of multiple degrees of freedom. Our work represents a step toward the practical application of quantum metadevices for the measurement of OAM quantum states in free-space quantum imaging and communications.

3.
Opt Express ; 31(3): 4268-4280, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785399

RESUMO

Microwave photonics offers a promising solution for frequency converting microwave signals, however, demonstrations so far have either been bulky fibre implementations or lacked rejection of interfering image signals. Here, we demonstrate the first microwave photonic mixer with image rejection of broadband signals utilising chip-based stimulated Brillouin scattering and interferometry. We demonstrate frequency down-conversion of carrier frequencies ranging from 10 GHz-16 GHz, ultra-high image rejection for a single tone of up to 70 dB, and 100 MHz and 400 MHz wide analogue signals with 28.5 dB and 16 dB image rejection, respectively. Furthermore, we down-convert 200 Mb/s quadrature-phase-shift keying signals with an error vector magnitude as low as -9.6 dB when simultaneously present interfering image signals are suppressed by the mixer.

4.
Opt Express ; 31(22): 35624-35631, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017729

RESUMO

We demonstrate the quantitative pressure measurement of gas molecules in the mid-infrared using chip-based supercontinuum and cepstrum analysis without additional measurements for baseline normalization. A supercontinuum generated in an on-chip waveguide made of chalcogenide glass having high nonlinearity passes through CO gas and provides a transmission spectrum. The gas absorption information is deconvoluted from the original supercontinuum spectral information containing temporal fluctuation by cepstrum analysis and extracted simply by applying a bandpass filter in the temporal domain. The gas pressure estimated from the extracted absorption information is consistent with the value measured by a pressure gauge within a difference of 1.25%, despite spectral fluctuations in the supercontinuum baseline comparable to the spectral depth of the gas absorption lines.

5.
Nano Lett ; 22(15): 6342-6349, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35877932

RESUMO

Coherence, similar to amplitude, polarization, and phase, is a fundamental characteristic of the light fields and is dominated by the statistical optical property. Although spatial coherence is one of the pivotal optical dimensions, it has not been significantly manipulated on the photonic platform. Here, we theoretically and experimentally manipulate the spatial coherence of light fields by loading different random phase distributions onto the wavefront with a metasurface. We achieve the generation of partially coherent light with a predefined degree of coherence and continuously modulate it from coherent to incoherent by controlling the phase fluctuation ranges or the beam sizes. This design strategy can be easily extended to manipulate arbitrary phase-only special beams with the same degree of coherence. Our approach provides straightforward rules to manipulate the coherence of light fields in an extra-cavity-based manner and paves the way for further applications in ghost imaging and information transmission in turbulent media.

6.
Opt Lett ; 47(1): 106-109, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34951891

RESUMO

To efficiently access light waves confined in a high-quality-factor (Q) microcavity over a wide spectral range, it is necessary to independently control coupling efficiency at different wavelengths. Here we suggest an approach to add a degree of freedom to control the coupling efficiency based on a two-point coupling geometry. By changing the phase difference between two paths connecting two coupling points, various combinations of coupling efficiencies at multiple wavelengths can be achieved. An analytic model describing the coupling property is derived and confirmed by experimental results. It is also shown that the coupling property can be modified by adjusting the effective refractive index difference between a waveguide and a resonator.

7.
Appl Opt ; 61(3): 744-750, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35200779

RESUMO

The polarization response of graphene oxide (GO)-coated planarized optical waveguides is used to determine the complex refractive index of GO film. GO films with thicknesses between 0.10 and 0.71 µm were coated on planarized optical waveguides. GO-coated waveguides exhibit large polarization dependent losses-and the polarization response depends strongly on the GO coating thickness. The response was used, together with finite element analysis, to determine the complex refractive index of the GO film. The complex refractive indices of GO films for both TE- and TM-polarized light at a wavelength of 1550 nm were found to be 1.71+0.09i and 1.58+0.05i, respectively. The uncertainties of nGO and kGO for TE-polarized light are ±0.02 and ±0.03, respectively, whereas the uncertainties of nGO and kGO for TM-polarized light are ±0.05 and ±0.02, respectively.

8.
Nano Lett ; 21(11): 4592-4597, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34008406

RESUMO

Topological states of light represent counterintuitive optical modes localized at boundaries of finite-size optical structures that originate from the properties of the bulk. Being defined by bulk properties, such boundary states are insensitive to certain types of perturbations, thus naturally enhancing robustness of photonic circuitries. Conventionally, the N-dimensional bulk modes correspond to (N - 1)-dimensional boundary states. The higher-order bulk-boundary correspondence relates N-dimensional bulk to boundary states with dimensionality reduced by more than 1. A special interest lies in miniaturization of such higher-order topological states to the nanoscale. Here, we realize nanoscale topological corner states in metasurfaces with C6-symmetric honeycomb lattices. We directly observe nanoscale topology-empowered edge and corner localizations of light and enhancement of light-matter interactions via a nonlinear imaging technique. Control of light at the nanoscale empowered by topology may facilitate miniaturization and on-chip integration of classical and quantum photonic devices.

9.
Opt Lett ; 46(10): 2413-2416, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33988597

RESUMO

We report a supercontinuum generation (SCG) in a waveguide that spontaneously forms without an etching process during the deposition of a core material on a preformed ${\rm{Si}}{{\rm{O}}_2}$ substructure. The mechanism of dispersion control for this new, to the best of our knowledge, type of waveguide is analyzed by numerical simulation, which results in a design rule to achieve a target dispersion profile by adjusting the substructure geometry. SCG is experimentally demonstrated with a waveguide made of ${\rm{A}}{{\rm{s}}_2}{{\rm{S}}_3}$, chalcogenide glass, which has low material absorption over the mid-IR range. A dispersion-controlled waveguide with a length of 10 mm pumped with 77 pJ pulses at a telecommunication wavelength of 1560 nm resulted in a supercontinuum that extends by more than 1.5 octaves.

10.
Nano Lett ; 20(7): 5309-5314, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32530635

RESUMO

Atomically thin monolayers of transition metal dichalcogenides (TMDs) have emerged as a promising class of novel materials for optoelectronics and nonlinear optics. However, the intrinsic nonlinearity of TMD monolayers is weak, limiting their functionalities for nonlinear optical processes such as frequency conversion. Here we boost the effective nonlinear susceptibility of a TMD monolayer by integrating it with a resonant dielectric metasurface that supports pronounced optical resonances with high quality factors: bound states in the continuum (BICs). We demonstrate that a WS2 monolayer combined with a silicon metasurface hosting BICs exhibits enhanced second-harmonic intensity by more than 3 orders of magnitude relative to a WS2 monolayer on top of a flat silicon film of the same thickness. Our work suggests a pathway to employ high-index dielectric metasurfaces as hybrid structures for enhancement of TMD nonlinearities with applications in nonlinear microscopy, optoelectronics, and signal processing.

11.
Opt Express ; 28(24): 36020-36032, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379706

RESUMO

True-time delays are important building blocks in modern radio frequency systems that can be implemented using integrated microwave photonics, enabling higher carrier frequencies, improved bandwidths, and a reduction in size, weight, and power. Stimulated Brillouin scattering (SBS) offers optically-induced continuously tunable delays and is thus ideal for applications that require programmable reconfiguration but previous approaches have been limited by large SBS gain requirements. Here, we overcome this limitation by using radio-frequency interferometry to enhance the Brillouin-induced delay applied to the optical sidebands that carry RF signals, while controlling the phase of the optical carrier with integrated silicon nitride microring resonators. We report a delay tunability over 600 ps exploiting an enhancement factor of 30, over a bandwidth of 1 GHz using less than 1 dB of Brillouin gain utilizing a photonic chip architecture based on Brillouin scattering and microring resonators.

12.
Opt Lett ; 45(19): 5571-5574, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001950

RESUMO

In this Letter, we report a chip-based photonic radio-frequency (RF) mixer with a maximum conversion gain of -9dB and image rejection ratio of 50 dB for 3.2 GHz to 13.2 GHz RF frequency range. This is achieved by the combined use of optical carrier suppression modulation and on-chip stimulated Brillouin scattering. These results will stimulate future implementations of integrated photonic RF mixers in complicated electromagnetic environments.

13.
Opt Lett ; 45(13): 3705-3708, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630934

RESUMO

We present a high-performance radio frequency (RF) photonic bandpass filter enabled by combining on-chip Brillouin scattering with a suppressed carrier phase modulation scheme. We achieve a low RF loss of 5 dB and a large stopband rejection of more than 40 dB, which represents a significant improvement of 20 dB to the RF passband gain and 31 dB to the RF rejection ratio over traditional modulation schemes under the same optical power consumption. We further demonstrate filter reconfigurability including multiple passbands, wide frequency (1-20 GHz), and bandwidth tunability (30-350 MHz) without compromising the RF performance.

14.
Nano Lett ; 19(7): 4221-4228, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30742772

RESUMO

Colors with high saturation are of prime significance for display and imaging devices. So far, structural colors arising from all-dielectric metasurfaces, particularly amorphous silicon and titanium oxide, have exceeded the gamut of standard RGB (sRGB) space. However, the excitation of higher-order modes for dielectric materials hinders the further increase of saturation. Here, to address the challenge, we propose a new design strategy of multipolar-modulated metasurfaces with multi-dielectric stacked layers to realize the deep modulation of multipolar modes. Index matching between layers can suppress the multipolar modes at nonresonant wavelength, resulting in the dramatic enhancement in the monochromaticity of reflection spectra. Ultrahigh-saturation colors ranging from 70% to 90% with full hue have been theoretically and experimentally obtained. The huge gamut space can be realized in an unprecedented way, taking up 171% sRGB space, 127% Adobe RGB space, and 57% CIE space. More interestingly, the coverage for Recommendation 2020 (Rec. 2020) space, which almost has not been successfully realized so far, can reach 90%. We anticipate that the proposed multipolar-modulated metasurfaces are promising for the enlargement of the color range for high-end and advanced display applications.

15.
Nano Lett ; 19(2): 1015-1022, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30605616

RESUMO

Mie-resonant high-index dielectric nanoparticles and metasurfaces have been suggested as a viable platform for enhancing both electric and magnetic dipole transitions of fluorescent emitters. While the enhancement of the electric dipole transitions by such dielectric nanoparticles has been demonstrated experimentally, the case of magnetic-dipole transitions remains largely unexplored. Here, we study the enhancement of spontaneous emission of Eu3+ ions, featuring both electric and magnetic-dominated dipole transitions, by dielectric metasurfaces composed of Mie-resonant silicon nanocylinders. By coating the metasurfaces with a layer of an Eu3+ doped polymer, we observe an enhancement of the Eu3+ emission associated with the electric (at 610 nm) and magnetic-dominated (at 590 nm) dipole transitions. The enhancement factor depends systematically on the spectral proximity of the atomic transitions to the Mie resonances as well as their multipolar order, both controlled by the nanocylinder size. Importantly, the branching ratio of emission via the electric or magnetic transition channel can be modified by carefully designing the metasurface, where the magnetic dipole transition is enhanced more than the electric transition for cylinders with radii of about 130 nm. We confirm our observations by numerical simulations based on the reciprocity principle. Our results open new opportunities for bright nanoscale light sources based on magnetic transitions.

16.
Small ; 15(20): e1900483, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30985077

RESUMO

Simultaneous broadband and high efficiency merits of designer metasurfaces are currently attracting widespread attention in the field of nanophotonics. However, contemporary metasurfaces rarely achieve both advantages simultaneously. For the category of transmissive metadevices, plasmonic or conventional dielectric metasurfaces are viable for either broadband operation with relatively low efficiency or high efficiency at only a selection of wavelengths. To overcome this limitation, dielectric nanoarcs are proposed as a means to accomplish two advantages. Continuous nanoarcs support different electromagnetic resonant modes at localized areas for generating phase retardation. Meanwhile, the geometric nature of nanoarc curvature endows the nanoarcs with full phase coverage of 0-2π due to the Pancharatnam-Berry phase principle. Experimentally incorporated with the chiral-detour phase principle, a few compelling functionalities are demonstrated, such as chiral beamsplitting, broadband holography, and helicity-selective holography. The continuous nanoarc metasurfaces prevail over plasmonic or dielectric discretized building block strategies and the findings lead to novel designs of spin-controllable metadevices.

17.
Opt Express ; 27(26): 37795-37805, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878554

RESUMO

Low temperature deposition of low loss silicon nitride (SiN) thin-films is very attractive as it opens opportunities for realization of multi-layer photonic chips and hybrid integration of optical waveguides with temperature sensitive platforms such as processed CMOS silicon electronics or lithium niobate on insulator. So far, the most common low-temperature deposition technique for SiN is plasma enhanced chemical vapor deposition (PECVD), however such SiN thin-films can suffer from significant losses at C-band wavelengths due to unwanted hydrogen bonds. In this contribution we present a back end of line (< 400°C), low loss SiN platform based on reactive sputtering for telecommunication applications. Waveguide losses of 0.8 dB/cm at 1550 nm and as low as 0.6 dB/cm at 1580 nm have been achieved for moderate confined waveguides which appear to be limited by patterning rather than material. These findings show that reactive sputtered SiN thin-films can have lower optical losses compared to PECVD SiN thin-films, and thus show promise for future hybrid integration platforms for applications such as high Q resonators, optical filters and delay lines for optical signal processing.

18.
Opt Express ; 27(23): 33847-33853, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31878444

RESUMO

We study, both theoretically and experimentally, tunable metasurfaces supporting sharp Fano-resonances inspired by optical bound states in the continuum. We explore the use of arsenic trisulfide (a photosensitive chalcogenide glass) having optical properties which can be finely tuned by light absorption at the post-fabrication stage. We select the resonant wavelength of the metasurface corresponding to the energy below the arsenic trisulfide bandgap, and experimentally control the resonance spectral position via exposure to the light of energies above the bandgap.

19.
Opt Express ; 27(9): 12855-12868, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31052820

RESUMO

Detection and frequency estimation of radio frequency (RF) signals are critical in modern RF systems, including wireless communication and radar. Photonic techniques have made huge progress in solving the problem imposed by the fundamental trade-off between detection range and accuracy. However, neither fiber-based nor integrated photonic RF signal detection and frequency estimation systems have achieved wide range and low error with high sensitivity simultaneously in a single system. In this paper, we demonstrate the first Brillouin opto-electronic oscillator (B-OEO) based on on-chip stimulated Brillouin scattering (SBS) to achieve RF signal detection. The broad tunability and narrowband amplification of on-chip SBS allow for the wide-range and high-accuracy detection. Feeding the unknown RF signal into the B-OEO cavity amplifies the signal which is matched with the oscillation mode to detect low-power RF signals. We are able to detect RF signals from 1.5 to 40 GHz with power levels as low as -67 dBm and a frequency accuracy of ± 3.4 MHz. This result paves the way to compact, fully integrated RF detection and channelization.

20.
Opt Express ; 27(2): 667-679, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30696149

RESUMO

An all-dielectric metasurface is deemed to serve a potential platform to demonstrate spectral filters. Silicon-rich silicon nitride (SRN), which contains a relatively large portion of silicon, can exhibit higher refractive indices, when compared to silicon nitride. Meanwhile, the extinction coefficient of SRN is smaller than that of hydrogenated amorphous silicon, leading to reduced absorption loss in the shorter wavelength. SRN is therefore recommended as a scattering element from the perspective of realizing all-dielectric metasurfaces. In this work, we propose and embody a suite of highly efficient structural color filters, capitalizing on a dielectric metasurface that consists of a two-dimensional array of SRN nanodisks that are embedded in a polymeric layer. The SRN nanodisks may support the electric dipole (ED) and magnetic dipole (MD) resonances via Mie scattering, thereby leading to appropriate spectral filtering characteristics. The ED and MD are identified from field profile observation with the assistance of finite-difference time-domain simulations. The manufactured color filters are observed to produce various colors in both transmission and reflection modes throughout the visible band, giving rise to a high transmission of around 90% in the off-resonance region and a reflection ranging up to 60%. A variety of colors can be realized by tuning the resonance by adjusting the structural parameters such as the period, diameter, and height of the SRN nanodisks. The spectral position of resonances might be flexibly tuned by tailoring the polymer surrounding the SRN nanodisks. It is anticipated that the proposed coloring devices will be actively used for color displays, imaging devices, and photorealistic color printing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA