Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 597(7876): 393-397, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34433967

RESUMO

Cellular dynamics and fate decision in early human embryogenesis remain largely unknown owing to the challenges of performing studies in human embryos1. Here, we explored whole-genomes of 334 single-cell colonies and targeted deep sequences of 379 bulk tissues obtained from various anatomical locations of seven recently deceased adult human donors. Using somatic mutations as an intrinsic barcode, we reconstructed early cellular phylogenies that demonstrate (1) an endogenous mutational rate that is higher in the first cell division but decreases to approximately one per cell per cell division later in life; (2) universal unequal contribution of early cells to embryo proper, resulting from early cellular bottlenecks that stochastically set aside epiblast cells within the embryo; (3) examples of varying degrees of early clonal imbalances between tissues on the left and right sides of the body, different germ layers and specific anatomical parts and organs; (4) emergence of a few ancestral cells that will substantially contribute to adult cell pools in blood and liver; and (5) presence of mitochondrial DNA heteroplasmy in the fertilized egg. Our approach also provides insights into the age-related mutational processes and loss of sex chromosomes in normal somatic cells. In sum, this study provides a foundation for future studies to complete cellular phylogenies in human embryogenesis.


Assuntos
Linhagem da Célula/genética , Células Clonais/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Mutação , DNA Mitocondrial/genética , Embrião de Mamíferos/embriologia , Feminino , Humanos , Masculino , Taxa de Mutação
2.
Mamm Genome ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177814

RESUMO

Understanding somatic mutations and structural variations in domestic pigs (Sus scrofa domestica) is critical due to their increasing importance as model organisms in biomedical research. In this study, we conducted a comprehensive analysis through whole-genome sequencing of skin, organs, and blood samples. By examining two pig pedigrees, we investigated the inheritance and sharedness of structural variants among fathers, mothers, and offsprings. Utilizing single-cell clonal expansion techniques, we observed significant variations in the number of somatic mutations across different tissues. An in-house developed pipeline enabled precise filtering and analysis of these mutations, resulting in the construction of individual phylogenetic trees for two pigs. These trees explored the developmental relationships between different tissues, revealing insights into clonal expansions from various anatomical locations. This study enhances the understanding of pig genomes, affirming their increasing value in clinical and genomic research, and provides a foundation for future studies in other animals, paralleling previous studies in mice and humans. This approach not only deepens our understanding of mammalian genomic variations but also strengthens the role of pigs as a crucial model in human health and disease research.

3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731965

RESUMO

Antimicrobial resistance has recently been considered an emerging catastrophe globally. The public health and environmental threats were aggravated by the injudicious use of antibiotics in animal farming, aquaculture, and croup fields, etc. Consequently, failure of antibiotic therapies is common because of the emergence of multidrug-resistant (MDR) bacteria in the environment. Thus, the reduction in antibiotic spillage in the environment could be an important step for overcoming this situation. Bear in mind, this research was focused on the green synthesis of chitosan nanoparticles (ChiNPs) using Citrus lemon (Assam lemon) extract as a cross-linker and application in controlling MDR bacteria to reduce the antibiotic spillage in that sector. For evaluating antibacterial activity, Staphylococcus aureus and Escherichia coli were isolated from environmental specimens, and their multidrug-resistant pattern were identified both phenotypically by disk diffusion and genotypically by detecting methicillin- (mecA), penicillin- (blaZ), and streptomycin (aadA1)-resistance encoding genes. The inhibitory zone's diameter was employed as a parameter for determining the antibacterial effect against MDR bacteria revealing 30 ± 0.4 mm, 34 ± 0.2 mm, and 36 ± 0.8 mm zones of inhibition against methicillin- (mecA) and penicillin (blaZ)-resistant S. aureus, and streptomycin (aadA1)-resistant E. coli, respectively. The minimum inhibitory concentration at 0.31 mg/mL and minimum bactericidal concentration at 0.62 mg/mL of yielded ChiNPs were used as the broad-spectrum application against MDR bacteria. Finally, the biocompatibility of ChiNPs was confirmed by showing a negligible decrease in BHK-21 cell viability at doses less than 2 MIC, suggesting their potential for future application in antibiotic-free farming practices.


Assuntos
Antibacterianos , Quitosana , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Nanopartículas , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Quitosana/farmacologia , Quitosana/química , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Química Verde , Testes de Sensibilidade Microbiana , Nanopartículas/química , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Staphylococcus aureus/efeitos dos fármacos
4.
J Neurosci ; 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35882557

RESUMO

The complex pathophysiology of post-traumatic brain damage might need a polypharmacological strategy with a combination of drugs that target multiple, synergistic mechanisms. We currently tested a combination of apocynin (curtails formation of reactive oxygen species; ROS), tert-butylhydroquinone (promotes disposal of ROS), and salubrinal (prevents endoplasmic reticulum stress) following a moderate traumatic brain injury (TBI) induced by controlled cortical impact in adult mice. Adult mice of both sexes treated with the above tri-combo showed alleviated motor and cognitive deficits, attenuated secondary lesion volume, and decreased oxidative DNA damage. Concomitantly, tri-combo treatment regulated post-TBI inflammatory response by decreasing the infiltration of T cells and neutrophils and activation of microglia in both sexes. Interestingly, sexual dimorphism was seen in the case of TBI-induced microgliosis and infiltration of macrophages in the tri-combo treated mice. Moreover, the tri-combo treatment prevented TBI-induced white matter volume loss in both sexes. The beneficial effects of tri-combo treatment were long-lasting and were also seen in aged mice. Thus, the present study supports the tri-combo treatment to curtail oxidative stress and endoplasmic reticulum stress concomitantly as a therapeutic strategy to improve TBI outcomes.SIGNIFICANCE STATEMENTOf the several mechanisms that contribute to TBI pathophysiology, oxidative stress, endoplasmic reticulum (ER) stress, and inflammation play a major role. The present study shows the therapeutic potential of a combination of apocynin, tert-butylhydroquinone, and salubrinal to prevent oxidative stress and ER stress and the interrelated inflammatory response in mice subjected to TBI. The beneficial effects of the tri-combo include alleviation of TBI-induced motor and cognitive deficits and lesion volume. The neuroprotective effects of the tri-combo are also linked to its ability to prevent TBI-induced white matter damage. Importantly, neuroprotection by the tri-combo treatment was observed to be not dependent on sex or age. Our data demonstrate that a polypharmacological strategy is efficacious after TBI.

5.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685938

RESUMO

This review discusses receptor-binding domain (RBD) mutations related to the emergence of various SARS-CoV-2 variants, which have been highlighted as a major cause of repetitive clinical waves of COVID-19. Our perusal of the literature reveals that most variants were able to escape neutralizing antibodies developed after immunization or natural exposure, pointing to the need for a sustainable technological solution to overcome this crisis. This review, therefore, focuses on nanotechnology and the development of antiviral nanomaterials with physical antagonistic features of viral replication checkpoints as such a solution. Our detailed discussion of SARS-CoV-2 replication and pathogenesis highlights four distinct checkpoints, the S protein (ACE2 receptor coupling), the RBD motif (ACE2 receptor coupling), ACE2 coupling, and the S protein cleavage site, as targets for the development of nano-enabled solutions that, for example, prevent viral attachment and fusion with the host cell by either blocking viral RBD/spike proteins or cellular ACE2 receptors. As proof of this concept, we highlight applications of several nanomaterials, such as metal and metal oxide nanoparticles, carbon-based nanoparticles, carbon nanotubes, fullerene, carbon dots, quantum dots, polymeric nanoparticles, lipid-based, polymer-based, lipid-polymer hybrid-based, surface-modified nanoparticles that have already been employed to control viral infections. These nanoparticles were developed to inhibit receptor-mediated host-virus attachments and cell fusion, the uncoating of the virus, viral gene expression, protein synthesis, the assembly of progeny viral particles, and the release of the virion. Moreover, nanomaterials have been used as antiviral drug carriers and vaccines, and nano-enabled sensors have already been shown to enable fast, sensitive, and label-free real-time diagnosis of viral infections. Nano-biosensors could, therefore, also be useful in the remote testing and tracking of patients, while nanocarriers probed with target tissue could facilitate the targeted delivery of antiviral drugs to infected cells, tissues, organs, or systems while avoiding unwanted exposure of non-target tissues. Antiviral nanoparticles can also be applied to sanitizers, clothing, facemasks, and other personal protective equipment to minimize horizontal spread. We believe that the nanotechnology-enabled solutions described in this review will enable us to control repeated SAR-CoV-2 waves caused by antibody escape mutations.


Assuntos
COVID-19 , Nanotubos de Carbono , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/genética , Anticorpos Neutralizantes , Mutação , Lipídeos
6.
Sens Actuators B Chem ; 352: 131060, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34785863

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is one of the most harmful viruses for humans in nowadays. To prevent the spread of MERS-CoV, a valid detection method is highly needed. For the first time, a MERS-nanovesicle (NV) biosensor composed of multi-functional DNA aptamer and graphene oxide encapsulated molybdenum disulfide (GO-MoS2) hybrid nanocomposite was fabricated based on electrochemical (EC) and surface-enhanced Raman spectroscopy (SERS) techniques. The MERS-NV aptamer was designed for specifically binding to the spike protein on MERS-NVs and it is prepared using the systematic evolution of ligands by exponential enrichment (SELEX) technique. For constructing a multi-functional MERS aptamer (MF-aptamer), the prepared aptamer was connected to the DNA 3-way junction (3WJ) structure. DNA 3WJ has the three arms that can connect the three individual functional groups including MERS aptamer (bioprobe), methylene blue (signal reporter) and thiol group (linker) Then, GO-MoS2 hybrid nanocomposite was prepared for the substrate of EC/SERS-based MERS-NV biosensor construction. Then, the assembled multifunctional (MF) DNA aptamer was immobilized on GO-MoS2. The proposed biosensor can detect MERS-NVs not only in a phosphate-buffered saline (PBS) solution (SERS LOD: 0.176 pg/ml, EIS LOD: 0.405 pg/ml) but also in diluted 10% saliva (SERS LOD: 0.525 pg/ml, EIS LOD: 0.645 pg/ml).

7.
Nano Lett ; 21(1): 693-699, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33346665

RESUMO

Cell-free DNA (cfDNA) has attracted significant attention due to its high potential to diagnose diseases, such as cancer. Still, its detection by amplification method has limitations because of false-positive signals and difficulty in designing target-specific primers. CRISPR-Cas-based fluorescent biosensors have been developed but also need the amplification step for the detection. In this study, for the first time CRISPR-Cas12a based nucleic acid amplification-free fluorescent biosensor was developed to detect cfDNA by a metal-enhanced fluorescence (MEF) using DNA-functionalized Au nanoparticle (AuNP). Upon activating the CRISPR-Cas12a complex by the target cfDNA and subsequent single-strand DNA (ssDNA) degradation between AuNP and fluorophore, MEF occurred with color changes from purple to red-purple. Using this system, breast cancer gene-1 (BRCA-1) can be detected with very high sensitivity in 30 min. This rapid and highly selective sensor can be applied to measure other nucleic acid biomarkers such as viral DNA in field-deployable and point-of-care testing (POCT) platform.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ácidos Nucleicos , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Colorimetria , DNA/genética , Ouro
8.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216320

RESUMO

In this study, we fabricated a three-dimensional (3D) scaffold using industrial polylactic acid (PLA), which promoted the proliferation and differentiation of human neural stem cells. An industrial PLA 3D scaffold (IPTS) cell chip with a square-shaped pattern was fabricated via computer-aided design and printed using a fused deposition modeling technique. To improve cell adhesion and cell differentiation, we coated the IPTS cell chip with gold nanoparticles (Au-NPs), nerve growth factor (NGF) protein, an NGF peptide fragment, and sonic hedgehog (SHH) protein. The proliferation of F3.Olig2 neural stem cells was increased in the IPTS cell chips coated with Au-NPs and NGF peptide fragments when compared with that of the cells cultured on non-coated IPTS cell chips. Cells cultured on the IPTS-SHH cell chip also showed high expression of motor neuron cell-specific markers, such as HB9 and TUJ-1. Therefore, we suggest that the newly engineered industrial PLA scaffold is an innovative tool for cell proliferation and motor neuron differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Poliésteres/química , Poliésteres/farmacologia , Alicerces Teciduais/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proteínas Hedgehog/metabolismo , Humanos , Nanopartículas Metálicas/química , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Nanofibras/química , Células-Tronco Neurais/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Impressão Tridimensional
9.
Anal Chem ; 93(28): 9927-9932, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34236175

RESUMO

Dynamics of release and cellular uptake of aqueous CO from CO-releasing molecules (CORMs) significantly affect signaling and cell viability. So far, it has been mainly observed by IR, UV-visible, and fluorescence techniques, which suffer from poor sensitivity and slow response time. Here, we show how to directly probe the mass transfer of aqueous CO from CORMs to cells using a fluidic chamber integrated with live cells and Raman reporters of large-area Au@Pd core-shell nanoparticle assembly to emulate a physiologically relevant microenvironment. We sensitively and directly detect CO release from trace CORMs of as low as 100 nM by measuring the Raman transitions of CO via rapid chemisorption onto the surface of the Au@Pd nanoparticles. By using our method, we successfully observe the dynamics of CO release from CORM-2 despite its very short half-life. We also reveal that the initial rate of CO release from CORM-3 is dramatically decreased by tens to hundreds of times when exposed to physiologically relevant pH variations from 7.4 to 2.5, which can be attributed to the acid hydrolysis of the CO ligand. CORM-2 tends to quickly release CO regardless of pH, probably because of its rapid cleavage into two monomeric Ru complexes by the co-solvent. The decrease in the initial rate at lower temperatures is more significant for CORM-3 than for CORM-2. Finally, we observe that the cellular uptake of aqueous CO from CORM-3 by lung cancer cells is approximately 2 times higher than that of normal lung cells.


Assuntos
Monóxido de Carbono , Compostos Organometálicos , Transporte Biológico , Sobrevivência Celular , Humanos , Água
10.
Adv Funct Mater ; 31(5)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33776614

RESUMO

Nanoparticle-based nucleic acid conjugates (NP-NACs) hold great promise for theragnostic (diagnostic and therapeutic) applications. However, several limitations have hindered the realization of their full potential in the clinical treatment of cancer and other diseases. In diagnosis, NP-NACs, combined with conventional optical sensing systems, have been applied for cancer detection in vitro, but low signal-to-noise ratios limit their broad in vivo applications. Meanwhile, the efficiency of NP-NAC-mediated cancer therapies has been limited through the adaptation of alternative pro-survival pathways in cancer cells. The recent emergence of personalized and precision medicine has outlined the importance of both accurate diagnosis and efficient therapeutics in a single platform. As such, we report the controlled assembly of hybrid graphene oxide/gold nanoparticle-based cancer-specific NACs (Au@GO NP-NACs) for multimodal imaging and combined therapeutics. Our developed Au@GO NP-NACs shows excellent surface-enhanced Raman scattering (SERS)-mediated live-cell cancer detection and multimodal synergistic cancer therapy through the use of photothermal, genetic, and chemotherapeutic strategies. Synergistic and selective killing of cancer cells were then demonstrated by using in vitro microfluidic models and nine different cancer cell lines by further incorporating near-infrared photothermal hyperthermia, a Topoisomerase II anti-cancer drug, and cancer targeting peptides. Moreover, with distinctive advantages of the Au@GO NP-NACs for cancer theragnostics, we further demonstrated precision cancer treatment through the detection of cancer cells in vivo using SERS followed by efficient ablation of the tumor. Therefore, our Au@GO NP-NACs could pave a new road for the advanced theragnostics of cancer as well as many other diseases.

11.
Small ; 17(41): e2102892, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34515417

RESUMO

Native extracellular matrix (ECM) exhibits dynamic change in the ligand position. Herein, the ECM-emulating control and real-time monitoring of stem cell differentiation are demonstrated by ligand nanoassembly. The density of gold nanoassembly presenting cell-adhesive Arg-Gly-Asp (RGD) ligand on Fe3 O4 (magnetite) nanoparticle in nanostructures flexibly grafted to material is changed while keeping macroscale ligand density invariant. The ligand nanoassembly on the Fe3 O4 can be magnetically attracted to mediate rising and falling ligand movements via linker stretching and compression, respectively. High ligand nanoassembly density stimulates integrin ligation to activate the mechanosensing-assisted stem cell differentiation, which is monitored via in situ real-time electrochemical sensing. Magnetic control of rising and falling ligand movements hinders and promotes the adhesion-mediated mechanotransduction and differentiation of stem cells, respectively. These rising and falling ligand states yield the difference in the farthest distance (≈34.6 nm) of the RGD from material surface, thereby dynamically mimicking static long and short flexible linkers, which hinder and promote cell adhesion, respectively. Design of cytocompatible ligand nanoassemblies can be made with combinations of dimensions, shapes, and biomimetic ligands for remotely regulating stem cells for offering novel methodologies to advance regenerative therapies.


Assuntos
Fenômenos Magnéticos , Mecanotransdução Celular , Adesão Celular , Diferenciação Celular , Ligantes
12.
Nano Lett ; 20(10): 7100-7107, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32809833

RESUMO

Although fluorescence-based analytical methods have been used in intracellular analyses, their sensitivity is low for the precise analysis of intracellular proteolytic enzymes to observe cell apoptosis related to cancer and neurodegenerative diseases. In this study, a metal-enhanced-fluorescence (MEF)-based highly sensitive biosensor for the detection of proteolytic enzymes is proposed for the first time by using a bifunctional Au nanoparticle (AuNP), which is connected to the fluorophore by both single-stranded DNA (ssDNA) and a peptide. Once caspase-3, a proteolytic enzyme, cuts the peptide specifically, the fluorescence signal is drastically increased because the ssDNA maintains an optimal distance for the MEF. The proposed sensing method shows the highly sensitive detection of caspase-3 based on just a simple enzymatic cleavage reaction within 1 h, and caspase-3-related preapoptotic cell detection was successfully carried out with high sensitivity. The proposed sensing method is a rapid, simple, and one-step technique for the real-time monitoring of intracellular proteolytic enzymes and can be applied to the early diagnosis of cancer and neurodegenerative diseases.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Corantes Fluorescentes , Ouro , Peptídeo Hidrolases
13.
Nano Lett ; 20(10): 7670-7679, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32870013

RESUMO

In situ quantitative measurements of neurotransmitter activities can provide useful insights into the underlying mechanisms of stem cell differentiation, the formation of neuronal networks, and neurodegenerative diseases. Currently, neurotransmitter detection methods suffer from poor spatial resolution, nonspecific detection, and a lack of in situ analysis. To address this challenge, herein, we first developed a graphene oxide (GO)-hybrid nanosurface-enhanced Raman scattering (SERS) array to detect dopamine (DA) in a selective and sensitive manner. Using the GO-hybrid nano-SERS array, we successfully measured a wide range of DA concentrations (10-4 to 10-9 M) rapidly and reliably. Moreover, the measurement of DA from differentiating neural stem cells applies to the characterization of neuronal differentiation. Given the challenges of in situ detection of neurotransmitters at the single-cell level, our developed SERS-based detection method can represent a unique tool for investigating single-cell signaling pathways associated with DA, or other neurotransmitters, and their roles in neurological processes.


Assuntos
Grafite , Células-Tronco Neurais , Dopamina , Neurotransmissores , Análise Espectral Raman
14.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209790

RESUMO

We developed a multi-channel cell chip containing a three-dimensional (3D) scaffold for horizontal co-culture and drug toxicity screening in multi-organ culture (human glioblastoma, cervical cancer, normal liver cells, and normal lung cells). The polydimethylsiloxane (PDMS) multi-channel cell chip (PMCCC) was based on fused deposition modeling (FDM) technology. The architecture of the PMCCC was an open-type cell chip and did not require a pump or syringe. We investigated cell proliferation and cytotoxicity by conducting 3-(4,5-dimethylthiazol-2-yl)-2,5-dphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays and analysis of oleanolic acid (OA)-treated multi-channel cell chips. The results of the MTT and LDH assays showed that OA treatment in the multi-channel cell chip of four cell lines enhanced chemoresistance of cells compared with that in the 2D culture. Furthermore, we demonstrated the feasibility of the application of our multi-channel cell chip in various analysis methods through Annexin V-fluorescein isothiocyanate/propidium iodide staining, which is not used for conventional cell chips. Taken together, the results demonstrated that the PMCCC may be used as a new 3D platform because it enables simultaneous drug screening in multiple cells by single point injection and allows analysis of various biological processes.


Assuntos
Técnicas de Cultura de Células , Avaliação Pré-Clínica de Medicamentos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Proliferação de Células , Tamanho Celular , Técnicas de Cocultura/instrumentação , Técnicas de Cocultura/métodos , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos , Células HeLa , Humanos , Dispositivos Lab-On-A-Chip , Teste de Materiais , Alicerces Teciduais/química , Testes de Toxicidade/instrumentação , Testes de Toxicidade/métodos
15.
Vet Radiol Ultrasound ; 62(1): 61-67, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33236810

RESUMO

Quantitative analysis of urethral size in male dogs by retrograde CT urethrography using a power injector is a recently reported technique. The aim of the current, prospective, analytical study was to apply the same method to six, healthy, intact female Beagle dogs. The proximal (P < .0001) and middle (P = .0010) urethral volumes significantly differed between the empty and distended bladder states, although no significant difference was observed in the distal volume (P = .0971). Unlike male dogs, female dogs showed two patterns of the urethral course: a straight urethra and urethral flexure. The urethral flexure was always related to intrapelvic position of the urinary bladder, and the more caudal the location of the vesicourethral junction beyond the pecten of the pubic bone, the more marked the appearance of the urethral flexure. Analysis of the urethral diameter at five sites (adopted from the previous radiographic study) was performed, and the urethral diameter showed a significant difference between the empty and the distended bladder states at sites 1 (vesicourethral junction, P < .0001), 2 (P < .0001), and 3 (P = .0244). However, there were no significant differences at sites 4 (P = .2516) and 5 (inflatable retention bulb, P = .1260). The urinary bladder may be in part intrapelvically located in clinically healthy female dogs, and urethral flexure and urethral narrowing can result from the intrapelvic location of the bladder. Narrowing of the urethra should be interpreted with caution when the pelvic bladder is identified.


Assuntos
Tomografia Computadorizada por Raios X/veterinária , Uretra/diagnóstico por imagem , Urografia/veterinária , Animais , Cães , Feminino , Estudos Prospectivos , Tomografia Computadorizada por Raios X/métodos , Urografia/métodos
16.
Sensors (Basel) ; 20(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069896

RESUMO

For the early diagnosis of several diseases, various biomarkers have been discovered and utilized through the measurement of concentrations in body fluids such as blood, urine, and saliva. The most representative analytical method for biomarker detection is an immunosensor, which exploits the specific antigen-antibody immunoreaction. Among diverse analytical methods, surface plasmon resonance (SPR)-based immunosensors are emerging as a potential detection platform due to high sensitivity, selectivity, and intuitive features. Particularly, SPR-based immunosensors could detect biomarkers without labeling of a specific detection probe, as typical immunosensors such as enzyme-linked immunosorbent assay (ELISA) use enzymes like horseradish peroxidase (HRP). In this review, SPR-based immunosensors utilizing noble metals such as Au and Ag as SPR-inducing factors for the measurement of different types of protein biomarkers, including viruses, microbes, and extracellular vesicles (EV), are briefly introduced.


Assuntos
Metais/química , Ressonância de Plasmônio de Superfície/instrumentação , Bactérias/isolamento & purificação , Biomarcadores/análise , Vesículas Extracelulares/química , Proteínas/análise
17.
Nano Lett ; 19(11): 8138-8148, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31663759

RESUMO

Surface-enhanced Raman scattering (SERS) has demonstrated great potential to analyze a variety of bio/chemical molecular interactions within cells in a highly sensitive and selective manner. Despite significant advancements, it remains a critical challenge to ensure high sensitivity and selectivity, while achieving uniform signal enhancement and high reproducibility for quantitative detection of targeted biomarkers within a complex stem cell microenvironment. Herein, we demonstrate an innovative sensing platform, using graphene-coated homogeneous plasmonic metal (Au) nanoarrays, which synergize both electromagnetic mechanism (EM)- and chemical mechanism (CM)-based enhancement. Through the homogeneous plasmonic nanostructures, generated by laser interference lithography (LIL), highly reproducible enhancement of Raman signals could be obtained via a strong and uniform EM. Additionally, the graphene-functionalized surface simultaneously amplifies the Raman signals by an optimized CM, which aligns the energy level of the graphene oxide with the target molecule by tuning its oxidation levels, consequently increasing the sensitivity and accuracy of our sensing system. Using the dual-enhanced Raman scattering from both EM from the homogeneous plasmonic Au nanoarray and CM from the graphene surface, our graphene-Au hybrid nanoarray was successfully utilized to detect as well as quantify a specific biomarker (TuJ1) gene expression levels to characterize neuronal differentiation of human neural stem cells (hNSCs). Collectively, we believe our unique graphene-plasmonic hybrid nanoarray can be extended to a wide range of applications in the development of simple, rapid, and accurate sensing platforms for screening various bio/chemical molecules.


Assuntos
Ouro/química , Grafite/química , Nanoestruturas/química , Células-Tronco Neurais/citologia , Análise Espectral Raman/métodos , Técnicas Biossensoriais/métodos , Diferenciação Celular , Linhagem Celular , Fenômenos Eletromagnéticos , Humanos , Modelos Moleculares , Nanoestruturas/ultraestrutura , Neurogênese
18.
Molecules ; 25(2)2020 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-31940924

RESUMO

Over the past few decades, nanostructured conducting polymers have received great attention in several application fields, including biosensors, microelectronics, polymer batteries, actuators, energy conversion, and biological applications due to their excellent conductivity, stability, and ease of preparation. In the bioengineering application field, the conducting polymers were reported as excellent matrixes for the functionalization of various biological molecules and thus enhanced their performances as biosensors. In addition, combinations of metals or metal oxides nanostructures with conducting polymers result in enhancing the stability and sensitivity as the biosensing platform. Therefore, several methods have been reported for developing homogeneous metal/metal oxide nanostructures thin layer on the conducting polymer surfaces. This review will introduce the fabrications of different conducting polymers nanostructures and their composites with different shapes. We will exhibit the different techniques that can be used to develop conducting polymers nanostructures and to investigate their chemical, physical and topographical effects. Among the various biosensors, we will focus on conducting polymer-integrated electrochemical biosensors for monitoring important biological targets such as DNA, proteins, peptides, and other biological biomarkers, in addition to their applications as cell-based chips. Furthermore, the fabrication and applications of the molecularly imprinted polymer-based biosensors will be addressed in this review.


Assuntos
Técnicas Biossensoriais , DNA/análise , Técnicas Eletroquímicas , Glucose/análise , Peróxido de Hidrogênio/análise , Nanoestruturas/química , Proteínas/análise , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/química , Condutividade Elétrica , Humanos , Metais/química , Impressão Molecular/métodos , Óxidos/química , Polímeros/química , Piridinas/química
19.
Vet Radiol Ultrasound ; 61(3): 302-311, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32100910

RESUMO

Quantitative analysis of the normal retrograde urethrogram is well reported in radiography, but studies on CT urethrography are lacking. Recently, a method of retrograde CT urethrography using a power injector was described. The purpose of the current, prospective, analytical study was to quantify the urethral size of five, healthy, intact, male Beagle dogs using retrograde CT urethrography and a power injector. With the injection rate of the power injector set at 0.3 mL/s, 1 mL/kg of diluted contrast medium (15 mg I/mL) was injected, and a CT examination was performed. The state of the initial urethrogram taken was defined as "empty bladder." The same procedures were repeated with the injection of an additional 1 mL/kg of diluted contrast medium until the ureteral reflux was seen (distended bladder). There was a significant difference in volumes between the empty and distended bladder, but the membranous urethra showed the least difference (P = .0044) among the three regions (P < .0001 for the prostatic and penile urethra). Urethral diameters at six sites were measured from sagittal images, and the sites of measurements were adopted from the earlier radiographic studies. The most significant difference in the urethral diameters between the empty and distended bladder occurred at the cranial and middle prostatic urethra (P < .0001). The results of this study can be useful for interpreting the results of retrograde CT urethrography. Care must be taken when narrowing is suspected at the prostatic urethra, and if necessary, further distension of the urinary bladder should be tried.


Assuntos
Cistografia/veterinária , Cães/anatomia & histologia , Tomografia Computadorizada por Raios X/veterinária , Uretra/diagnóstico por imagem , Bexiga Urinária/diagnóstico por imagem , Animais , Cistografia/métodos , Cães/fisiologia , Masculino , Estudos Prospectivos , Próstata , Tomografia Computadorizada por Raios X/métodos , Uretra/anatomia & histologia , Uretra/fisiologia , Bexiga Urinária/anatomia & histologia , Bexiga Urinária/fisiologia
20.
J Cell Physiol ; 234(6): 8963-8974, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30317618

RESUMO

Spindlin 1 (SPIN1), which contains Tudor-like domains, regulates maternal transcripts via interaction with a messenger RNA (mRNA)-binding protein. SPIN1 is involved in tumorigenesis in somatic cells and is highly expressed in cancer cells. Nevertheless, the role of SPIN1 in porcine oocyte maturation remains totally unknown. To explore the function of SPIN1 in porcine oocyte maturation, knockdown, and overexpression techniques were used. SPIN1 mRNA was identified in maternal stages ranging from GV to MII. SPIN1 was localized in the cytoplasm and to chromosomes during meiosis. SPIN1 knockdown accelerated first polar body extrusion. Oocytes with overexpressed SPIN1 were arrested at the MI stage. SPIN1 depletion caused meiotic spindle defects and chromosome instability. The BUB3 signal was investigated, confirming that SPIN1 affects the stability of Bub3 mRNA as well as BUB3 expression. Further, overexpression of SPIN1 inhibited the degradation and regulation of G2/mitotic-specific cyclin-B1. In summation, SPIN1 regulates the meiotic cell cycle by modulating the activation of the spindle assembly checkpoint.


Assuntos
Anáfase , Proteínas de Ciclo Celular/metabolismo , Metáfase , Proteínas Associadas aos Microtúbulos/metabolismo , Oócitos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Fuso Acromático/metabolismo , Animais , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Células Cultivadas , Segregação de Cromossomos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Maturação in Vitro de Oócitos , Proteínas Associadas aos Microtúbulos/genética , Fosfoproteínas/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Transdução de Sinais , Sus scrofa , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA