Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nat Mater ; 16(5): 537-542, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28166216

RESUMO

Nanoscale distance-dependent phenomena, such as Förster resonance energy transfer, are important interactions for use in sensing and imaging, but their versatility for bioimaging can be limited by undesirable photon interactions with the surrounding biological matrix, especially in in vivo systems. Here, we report a new type of magnetism-based nanoscale distance-dependent phenomenon that can quantitatively and reversibly sense and image intra-/intermolecular interactions of biologically important targets. We introduce distance-dependent magnetic resonance tuning (MRET), which occurs between a paramagnetic 'enhancer' and a superparamagnetic 'quencher', where the T1 magnetic resonance imaging (MRI) signal is tuned ON or OFF depending on the separation distance between the quencher and the enhancer. With MRET, we demonstrate the principle of an MRI-based ruler for nanometre-scale distance measurement and the successful detection of both molecular interactions (for example, cleavage, binding, folding and unfolding) and biological targets in in vitro and in vivo systems. MRET can serve as a novel sensing principle to augment the exploration of a wide range of biological systems.


Assuntos
Fenômenos Magnéticos , Imageamento por Ressonância Magnética , Metaloproteinase 2 da Matriz/química , Metaloproteinase 2 da Matriz/metabolismo
2.
Angew Chem Int Ed Engl ; 55(1): 169-73, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26768819

RESUMO

Simultaneous delivery of multiple genes and proteins (e.g., transcription factors; TFs) is an emerging issue surrounding therapeutic research due to their ability to regulate cellular circuitry. Current gene and protein delivery strategies, however, are based on slow batch synthesis, which is ineffective, poorly controlled, and incapable of simultaneous delivery of both genes and proteins with synergistic functions. Consequently, advances in this field have been limited to in vitro studies. Here, by integrating microfluidic technologies with a supramolecular synthetic strategy, we present a high-throughput approach for formulating and screening multifunctional supramolecular nanoparticles (MFSNPs) self-assembled from a collection of functional modules to achieve simultaneous delivery of one gene and TF with unprecedented efficiency both in vitro and in vivo. We envision that this new approach could open a new avenue for immunotherapy, stem cell reprogramming, and other therapeutic applications.


Assuntos
Sistemas de Liberação de Medicamentos , Técnicas de Transferência de Genes , Genes , Ensaios de Triagem em Larga Escala , Nanopartículas/administração & dosagem , Nanopartículas/análise , Fatores de Transcrição/administração & dosagem , Técnicas Analíticas Microfluídicas , Nanopartículas/química
3.
Small ; 11(21): 2499-504, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25613059

RESUMO

Supramolecular nanosubstrate-mediated delivery (SNSMD) leverages the power of molecular self-assembly and a nanostructured substrate platform for the low toxicity, highly efficient co-delivery of biological factors encapsulated in a nanovector. Human fibroblasts are successfully reprogrammed into induced pluripotent stems and transdifferentiated into induced neuronal-like cells.


Assuntos
Transdiferenciação Celular , Técnicas de Reprogramação Celular/métodos , Reprogramação Celular , Linhagem Celular , Transdiferenciação Celular/genética , Reprogramação Celular/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Nanocápsulas , Nanotecnologia , Polimorfismo de Nucleotídeo Único
4.
Mycobiology ; 52(3): 201-206, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948449

RESUMO

The species within the family Cunninghamellaceae during an investigation of soil microfungi in Korea, in which three strains were isolated from Gangwon, Chungbuk, and Gyeongbuk provinces, designated as KNUF-22-121A, KNUF-22-126A, and KNUF-22-316, respectively. Because the morphological and molecular analyses of these three strains were identical, KNUF-22-316 underwent further detailed study. Phylogenetic analyses based on the concatenated nucleotide sequences of the internal transcribed spacer region and the large subunit 28S rRNA gene revealed that the strain belonged to the genus Absidia, but occupied a distinct phylogenetic position. The strain KNUF-22-316 was compared with closely related species Absidia radiata CGMCC 3.16257T and Absidia yunnanensis CGMCC 3.16259T, morphologically different with shorter sporangiophores, smaller sporangia and columellae, and the consistent presence of collars. Here, we provide a detailed description and images of this proposed new species, which we have named Absidia microsporangia sp. nov.

5.
Mycobiology ; 52(2): 111-116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690028

RESUMO

The fungal strain designated as KNUF-21-020, belonging to the genus Triangularia, was isolated from a soil sample collected in the Chungnam province, Korea. Phylogenetic analyses based on the concatenated nucleotide sequences of internal transcribed spacer regions and partial sequences of large subunit rRNA, beta-tubulin, and RNA polymerase II subunit genes revealed that the strain was grouped in a clade with Triangularia species. However, it occupied a distinct phylogenetic position. We also observed morphological differences between strain KNUF-21-020 and closely related species. Here, we provided detailed descriptions, illustrations, and discussions regarding the morphological and phylogenetic analyses of the closely related species to support the novelty of this isolated species. The phylogenetic analyses and morphological observations indicate that the strain KNUF-21-020 represents a novel species in the genus Triangularia (family: Podosporaceae). We have designated this species as Triangularia manubriata sp. nov.

6.
Nanoscale Adv ; 6(8): 2177-2184, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38633040

RESUMO

Although magnetic nanoparticles demonstrate significant potential as magnetic resonance imaging (MRI) contrast agents, their negative contrasts, liver accumulation, and limited excretion hinder their application. Herein, we developed ultrasmall Mn-doped iron oxide nanoparticles (UMIOs) with distinct advantages as T1 MRI contrast agents. Exceptionally small particle sizes (ca. 2 nm) and magnetization values (5 emu gMn+Fe-1) of UMIOs provided optimal T1 contrast effects with an ideally low r2/r1 value of ∼1. Furthermore, the use of Mn as a dopant facilitated hepatocyte uptake of the particles, allowing liver imaging. In animal studies, UMIOs exhibited significantly enhanced contrasts for sequential T1 imaging of blood vessels and the liver, distinguishing them from conventional magnetic nanoparticles. UMIOs were systematically cleared via dual hepatobiliary and renal excretion pathways, highlighting their safety profile. These characteristics imply substantial potential of UMIOs as T1 contrast agents for the accurate diagnosis of liver diseases.

7.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38378628

RESUMO

Altered expression of peripheral myelin protein 22 (PMP22) results in demyelinating peripheral neuropathy. PMP22 exhibits a highly restricted tissue distribution with marked expression in the myelinating Schwann cells of peripheral nerves. Auditory and vestibular Schwann cells and the afferent neurons also express PMP22, suggesting a unique role in hearing and balancing. Indeed, neuropathic patients diagnosed with PMP22-linked hereditary neuropathies often present with auditory and balance deficits, an understudied clinical complication. To investigate the mechanism by which abnormal expression of PMP22 may cause auditory and vestibular deficits, we studied gene-targeted PMP22-null mice. PMP22-null mice exhibit an unsteady gait, have difficulty maintaining balance, and live for only ∼3-5 weeks relative to unaffected littermates. Histological analysis of the inner ear revealed reduced auditory and vestibular afferent nerve myelination and profound Na+ channel redistribution without PMP22. Yet, Na+ current density was unaltered, in stark contrast to increased K+ current density. Atypical postsynaptic densities and a range of neuronal abnormalities in the organ of Corti were also identified. Analyses of auditory brainstem responses (ABRs) and vestibular sensory-evoked potential (VsEP) revealed that PMP22-null mice had auditory and vestibular hypofunction. These results demonstrate that PMP22 is required for hearing and balance, and the protein is indispensable for the formation and maintenance of myelin in the peripheral arm of the eighth nerve. Our findings indicate that myelin abnormalities and altered signal propagation in the peripheral arm of the auditory nerve are likely causes of auditory deficits in patients with PMP22-linked neuropathies.


Assuntos
Doenças Desmielinizantes , Proteínas da Mielina , Animais , Humanos , Camundongos , Doenças Desmielinizantes/metabolismo , Camundongos Knockout , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Células de Schwann/metabolismo
8.
Nat Commun ; 15(1): 526, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228630

RESUMO

The inner ear is the hub where hair cells (HCs) transduce sound, gravity, and head acceleration stimuli to the brain. Hearing and balance rely on mechanosensation, the fastest sensory signals transmitted to the brain. The mechanoelectrical transducer (MET) channel is the entryway for the sound-balance-brain interface, but the channel-complex composition is not entirely known. Here, we report that the mouse utilizes Piezo1 (Pz1) and Piezo2 (Pz2) isoforms as MET-complex components. The Pz channels, expressed in HC stereocilia, and cell lines are co-localized and co-assembled with MET complex partners. Mice expressing non-functional Pz1 and Pz2 at the ROSA26 locus have impaired auditory and vestibular traits that can only be explained if the Pzs are integral to the MET complex. We suggest that Pz subunits constitute part of the MET complex and that interactions with other MET complex components yield functional MET units to generate HC MET currents.


Assuntos
Orelha Interna , Células Ciliadas Auditivas Internas , Animais , Camundongos , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas/metabolismo , Estereocílios/metabolismo , Orelha Interna/metabolismo , Audição , Mecanotransdução Celular , Mamíferos/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo
9.
Nanoscale Adv ; 5(11): 3084-3090, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37260498

RESUMO

Due to the neural toxicity of mercury, there is a need for the development of on-site detection systems for Hg2+ monitoring. To this end, a new colorimetric mercury detection probe, Fe3O4@SiO2@Au (magnetic-Au; Mag-Au) hybrid nanoparticles, has been developed. The Au on the surface of Mag-Au is an indicator of Hg2+, which forms an AuHg alloy (amalgam) on their surface (Mag-Au@Hg), with excellent peroxidase-like activity. The oxidation of 3,3',5,5'-tetramethylbenzidine by Mag-Au@Hg resulted in a color change of the indicator solution, which was enhanced with increasing Hg2+ concentration. Mag-Au can be used to detect Hg2+ at nanomolar concentrations. Additionally, magnetic separation can be used to easily purify and concentrate the Mag-Au@Hg from samples, and thus avoid interference from unwanted residues or colored samples. The feasibility of Mag-Au for Hg2+ detection was tested with an artificial urine solution and it can be used to detect Hg2+ in various real samples, such as river water, seawater, food, and biological samples.

10.
RSC Adv ; 13(13): 8996-9002, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936848

RESUMO

Nanozymes are emerging materials in various fields owing to their advantages over natural enzymes, such as controllable and facile synthesis, tunability in catalytic activities, cost-effectiveness, and high stability under stringent conditions. In this study, the effect of metal salts on the formation and catalytic activity of carbon dots (CDs), a promising nanozyme, is demonstrated. By introducing Mn sources that possess different counter anions, the chemical structure and composition of the CDs produced are affected, thereby influencing their enzymatic activities. The synergistic catalytic effect of the Mn and N-doped CDs (Mn&N-CDs) is induced by effective metal doping in the carbogenic domain and a high proportion of graphitic and pyridinic N. This highly enhanced catalytic effect of Mn&N-CDs allows them to respond sensitively to the interference factors of enzymatic reactions. Consequently, ascorbic acid, which is an essential nutrient for maintaining our health and is a reactive oxygen scavenger, can be successfully monitored using color change by forming oxidized 3,3',5,5'-tetramethylbenzidine with H2O2 and Mn&N-CDs. This study provides a basic understanding of the formation of CDs and how their catalytic properties can be controlled by the addition of different metal sources, thereby providing guidelines for the development of CDs for industrial applications.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38082869

RESUMO

Understanding tumor's microenvironment is one of the key factors in the cancer therapy. Especially, from the perspective of immunotherapy, immune desert or cold tumor is referred as significantly downregulated T cell in-filtration due to lack of immune surveillance in the tumor microenvironment. There are many studies are dedicated to convert cold tumor to hot tumor for enhancing the efficacy of immunotherapy. In this study, we suggested selective immune activation system through the spatiotemporal control of the bacteria as an immune boosting agent. To this end, we have developed bacteria-based micro/bio robot system (BBMBR) by attaching bacteria with magnetic nanoparticles (MNP) so that the localization can be controlled through the magnetic field. The biomanufacturing results showed that BBMBR includes 6.6 ± 1.54 MNP attached and the presence ratio of bacteria-MNP out of total bacteria population reached 75.2 ± 3.37%. Spatial controllability experiments have shown that rotational and translation localization has been controlled as intended. The function of the immune modulation system through BBMBR was confirmed through experiments that magnetically driven BBMBR localization induced localized immune activation. M1-phenotype differentiation of macrophage cells were quantified CD80 staining, and overall immune response level was evaluated through IL-6 measurements. As the distance from the activation point increased, the population of M1 differentiated macrophages decreased, and when the movement of BBMBR was magnetically restricted, overall immune activation was found to be regulated downward. Proposed BBMBR and immune modulation framework could introduce a powerful new paradigm in cancer treatment by improving the localization controllability of immune-boosting agent and the spatial immune activation strategies.


Assuntos
Neoplasias , Robótica , Humanos , Macrófagos , Microambiente Tumoral , Bactérias
12.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37873357

RESUMO

Hearing loss is the most common form of sensory deficit. It occurs predominantly due to hair cell (HC) loss. Mammalian HCs are terminally differentiated by birth, making HC loss incurable. Here, we show the pharmacogenetic downregulation of Cldn9, a tight junction protein, generates robust supernumerary inner HCs (IHCs) in mice. The putative ectopic IHCs have functional and synaptic features akin to typical IHCs and were surprisingly and remarkably preserved for at least fifteen months >50% of the mouse's life cycle. In vivo, Cldn9 knockdown using shRNA on postnatal days (P) P1-7 yielded analogous functional putative ectopic IHCs that were equally durably conserved. The findings suggest that Cldn9 levels coordinate embryonic and postnatal HC differentiation, making it a viable target for altering IHC development pre- and post-terminal differentiation.

13.
Res Sq ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37502846

RESUMO

The inner ear is the hub where hair cells transduce sound, gravity, and head acceleration stimuli carried by neural codes to the brain. Of all the senses, hearing and balance, which rely on mechanosensation, are the fastest sensory signals transmitted to the central nervous system. The mechanoelectrical transducer (MET) channel in hair cells is the entryway for the sound-balance-brain interface, but the channel's composition has eluded biologists due to its complexity. Here, we report that the mouse utilizes Piezo1 (Pz1) and Piezo2 (Pz2) isoforms as central components of the MET complex. The Pz channel subunits are expressed in hair-cell stereocilia, are co-localized and co-assembled, and are essential components of the MET complex in vitro and in situ, including integration with the transmembrane channel (Tmc1/2) protein. Mice expressing non-functional Pz1 and Pz2, but not functional Pz1 at the ROSA26 locus under the control of hair-cell promoters, have impaired auditory and vestibular traits that can only be explained if Pz channel multimers are integral to the MET complex. We affirm that Pz protein subunits constitute MET channels and that functional interactions with components of the MET complex yield current properties resembling hair-cell MET currents. Our results demonstrate Pz is a MET channel component central to interacting with MET complex proteins. Results account for the MET channel pore and complex.

14.
Angew Chem Int Ed Engl ; 51(50): 12482-5, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23139178

RESUMO

Highly efficient apoptotic hyperthermia is achieved using a double-effector nanoparticle that can generate reactive oxygen species (ROS) and heat. ROS render cancer cells more susceptible to subsequent heat treatment, which remarkably increases the degree of apoptotic cell death. Xenograft tumors (100 mm(3)) in mice are completely eliminated within 8 days after a single mild magnetic hyperthermia treatment at 43 °C for 30 min.


Assuntos
Apoptose/efeitos dos fármacos , Hipertermia Induzida , Nanopartículas Metálicas/toxicidade , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Humanos , Campos Magnéticos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Metaloporfirinas/química , Metaloporfirinas/uso terapêutico , Metaloporfirinas/toxicidade , Camundongos , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Temperatura , Transplante Heterólogo
15.
Nanoscale Adv ; 4(8): 2029-2035, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36133412

RESUMO

This article presents the Zn-assisted synthesis of N-doped carbon dots (N-CDs) with an enhanced quantum yield (QY) and photostability. There have been intensive studies to improve or tune the optical properties of carbon dots (CDs) to meet the demand for luminescent materials in various fields, including energy conversion, photocatalysis, bioimaging, and phototherapy. For these applications, the photostability of the CDs is also a critical factor, but the related studies are relatively less common. The Zn-assisted N-CDs (denoted as Zn:N-CDs) obtained by the addition of Zn(OAc)2 to the precursors during the synthesis of N-CDs not only exhibited an enhanced quantum yield but also improved photostability compared to those of N-CDs. A comprehensive study of the chemical composition of Zn:N-CD and N-CD using X-ray photoelectron spectroscopy indicated a correlation between their chemical structure and photostability. Zn(OAc)2, which acts as a catalytic reagent, induced the modification of chemical structures at the edges of carbogenic sp2 domains, without being doped in N-CD, and the heteroatom-carbon bonds in Zn:N-CD seemed to be more resistant to light compared to those in N-CDs. The increased QY and photostability of Zn:N-CDs make them more suitable as an optical probe and they could be used in fingerprint identification. With Zn:N-CDs, the microstructure of fingerprints was confirmed clearly for a long duration effectively.

16.
Nanoscale Adv ; 4(3): 792-800, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36131828

RESUMO

Mag-spinner, a system in which magnets are combined with a spinner system, is a new type of magnetic separation system for the preprocessing of biological and medical samples. Interference by undesired components restricts the detection accuracy and efficiency. Thus, the development of appropriate separation techniques is required for better detection of the desired targets, to enrich the target analytes and remove the undesired components. The strong response of iron oxide nanoclusters can successfully capture the targets quickly and with high efficiency. As a result, cancer cells can be effectively separated from blood using the developed mag-spinner system. Indeed, this system satisfies the requirements for desirable separation systems, namely (i) fast sorting rates, (ii) high separation efficiency, (iii) the ability to process native biological fluids, (iv) simple operating procedures, (v) low cost, (vi) operational convenience, and (vii) portability. Therefore, this system is widely applicable to sample preparation without limitations on place, cost, and equipment.

17.
Front Cell Neurosci ; 16: 853035, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586548

RESUMO

Among the features of cisplatin chemotherapy-induced peripheral neuropathy are chronic pain and innocuous mechanical hypersensitivity. The complete etiology of the latter remains unknown. Here, we show that cisplatin targets a heterogeneous population of tyrosine hydroxylase-positive (TH+) primary afferent dorsal root ganglion neurons (DRGNs) in mice, determined using single-cell transcriptome and electrophysiological analyses. TH+ DRGNs regulate innocuous mechanical sensation through C-low threshold mechanoreceptors. A differential assessment of wild-type and vitamin E deficient TH+ DRGNs revealed heterogeneity and specific functional phenotypes. The TH+ DRGNs comprise; fast-adapting eliciting one action potential (AP; 1-AP), moderately-adapting (≥2-APs), in responses to square-pulse current injection, and spontaneously active (SA). Cisplatin increased the input resistance and AP frequency but reduced the temporal coding feature of 1-AP and ≥2-APs neurons. By contrast, cisplatin has no measurable effect on the SA neurons. Vitamin E reduced the cisplatin-mediated increased excitability but did not improve the TH+ neuron temporal coding properties. Cisplatin mediates its effect by targeting outward K+ current, likely carried through K2P18.1 (Kcnk18), discovered through the differential transcriptome studies and heterologous expression. Studies show a potential new cellular target for chemotherapy-induced peripheral neuropathy and implicate the possible neuroprotective effects of vitamin E in cisplatin chemotherapy.

18.
Nanomaterials (Basel) ; 11(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34835810

RESUMO

Nanomaterial-based enzyme mimetics (nanozymes) have attracted significant interest because of their lower cost and higher stability compared to natural enzymes. In this study, we focused on improving the enzymatic properties of metal induced N-doped carbon dots (N-CDs), which are nanozymes of interest, and their applications for sensory systems. For this purpose, Mn(acetate)2 was introduced during the synthetic step of N-doped carbon dots, and its influence on the enzymatic properties of Mn-induced N-CDs (Mn:N-CDs) was investigated. Their chemical structure was analyzed through infrared spectroscopy and X-ray photoelectron spectrometry; the results suggest that Mn ions lead to the variation in the population of chemical bonding in Mn:N-CDs, whereas these ions were not incorporated into N-CD frameworks. This structural change improved the enzymatic properties of Mn:N-CDs with respect to those of N-CDs when the color change of a 3,3',5,5'-tetramethylbenzidine/H2O2 solution was examined in the presence of Mn:N-CDs and N-CDs. Based on this enhanced enzymatic property, a simple colorimetric system with Mn:N-CDs was used for the detection of γ-aminobutyric acid, which is an indicator of brain-related disease. Therefore, we believe that Mn:N-CDs will be an excellent enzymatic probe for the colorimetric sensor system.

19.
ACS Omega ; 6(46): 31161-31167, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34841158

RESUMO

Magnetic nanoparticles have an important role as heat generators in magnetic fluid hyperthermia, a type of next-generation cancer treatment. Despite various trials to improve the heat generation capability of magnetic nanoparticles, iron oxide nanoparticles are the only approved heat generators for clinical applications, which require a large injection dose due to their low hyperthermia efficiency. In this study, iron oxide nanoclusters (NCs) with a highly enhanced hyperthermia effect and adjustable size were synthesized through a facile and simple solvothermal method. Among the samples, the NCs with a size of 25 nm showed the highest hyperthermia efficiency. Differently sized NCs exhibit inconsistent interparticle crystalline alignments, which affect their magnetic properties (e.g., coercivity and saturation magnetization). As a result, the optimal NCs exhibited a significantly enhanced heat generation efficiency compared with that of isolated iron oxide nanoparticles (ca. 7 nm), and their hyperthermia effect on skin cancer cells was confirmed.

20.
RSC Adv ; 11(31): 18776-18782, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35478662

RESUMO

Carbon dots (CDs) are attractive nanomaterials because of their facile synthesis, biocompatibility, superior physicochemical properties, and low cost of their precursors. Recent advances in CDs have particularly relied on the modulation of their properties by heteroatom doping (e.g., nitrogen). Although nitrogen-doped CDs (N-CDs) have attracted considerable attention owing to their different properties compared to those of the original CDs, the effects of the heteroatom content and types of bonding on the properties of N-doped CDs remain underexplored. In this work, we prepared N-CDs with controlled nitrogen contents, and fully examined their optical properties, enzymatic activity, and toxicity. We demonstrate that (i) the type of carbon-heteroatom bonding (i.e., carbon-oxygen and carbon-nitrogen bonds) can be altered by changing the ratio of carbon to heteroatom sources, and (ii) both the heteroatom content and the heteroatom-bonding character significantly influence the properties of the doped CDs. Notably, N-CDs exhibited higher quantum yields and peroxidase-like activities than the non-doped CDs. Furthermore, the negatively charged N-CDs exhibited negligible cytotoxicity. Such comprehensive investigations on the physicochemical properties of N-CDs are expected to guide the design of N-CDs for targeted applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA