Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomater Res ; 19: 25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635967

RESUMO

BACKGROUND: This study aimed to determine the effect of hardness change according to penetration depth in the laser fusing zone and observed the correlation of the microstructure as an Nd:YAG laser was irradiated to Ni-Cr alloy for dental use by setting the spot diameter size with respect to defocusing distances. In all groups, the hardness depth profiles in the laser fusing zone and heat-affecteded zone (HAZ) had larger values than those of the base metal. In addition, the hardness values in places beyond the fusing zone and the HAZ were measured as being quantitatively lower. METHODS: The alloys used in this study were Verabond 2 V, Noritake Super, and Bellabond Plus, which are commercially used non-precious dental alloys. The specimens were cut to have a plate shape with a size of 0.5 × 3.0 × 2.5 mm. This was followed by setting the Nd:YAG laser output, pulse duration, and frequency to 60 W, 10 ms, and 5 Hz, respectively. The laser was then irradiated as the spot diameter condition varied between 0.5 mm and 1.4 mm in accordance with defocusing distance from 0.0 mm to 2.0 mm. After the laser irradiation, a cross-section of the fusing zone in the specimens was observed in terms of laser melted depth, hardness depth profile, and the microstructure of each alloy. RESULTS: The observation result of the diffusion of the constituent elements and microstructure using field emission scanning electron microscopy, energy dispersive spectroscopy (EDS), and electron probe micro-analyzer showed that the fusing zone revealed a much finer dendritic form than the base metal due to the self-quenching effect after laser melting, while no change in constituent elements was found although some evaporation of the main elements was observed. CONCLUSIONS: These results suggest that each Mo and Si combined inter-metallic compounds were formed on the interdendritic area. Through this study, the laser fusing zone had better hardenability due to the inter-metallic compound and grain refinement effect.

2.
J Biomater Appl ; 27(2): 143-52, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21343218

RESUMO

In order to increase biocompatibility, many dental implants have been studied by immobilization of biomolecules on biomaterials. We used l-3,4-dihydroxyphenylalanine (L-DOPA) as a biomolecule for surface-modified titanium. Water contact angles of nontreated titanium discs (negative control), etched titanium discs (positive control), and titanium discs treated with L-DOPA following the etching process (experimental group) were 82.4 ± 5.7°, 67.1 ± 0.56°, and 44.15 ± 0.91°, respectively. Using atomic force microscopy images, we were able to find L-DOPA, which adhered to the titanium surface. The number of human bone marrow mesenchymal stem cells (BM-MSCs) in the experimental group was much higher than that of cells in any other group. Quantification values of amine groups in the positive control and experimental groups were approximately 3 and 7.5 µg, respectively. Therefore, findings from our research suggested the possibility of a causal link between increased L-DOPA content and cell proliferation in BM-MSCs. Moreover, coating of the discs with L-DOPA can result in greater hydrophilicity of the titanium surface and enhancement of cell adhesion and mitochondrial activity.


Assuntos
Materiais Revestidos Biocompatíveis/metabolismo , Dopaminérgicos/metabolismo , Levodopa/metabolismo , Células-Tronco Mesenquimais/citologia , Titânio/química , Proliferação de Células , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Dopaminérgicos/química , Humanos , Levodopa/química , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Propriedades de Superfície , Titânio/metabolismo
3.
Tissue Eng Part C Methods ; 16(5): 1059-68, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20073984

RESUMO

Synchrotron X-ray bioimaging was successfully carried out to observe bone regeneration by a novel artificial bone substitute of bioactive MegaGen Synthetic Bone (MGSB) and hyaluronate (HA) hydrogels. A biphasic calcium phosphate of MGSB was prepared by chemical precipitation method, with a porous spherical morphology. On the basis of the fact that HA plays important roles in bone regeneration and promotes the differentiation, vascularization, and migration of stem cells, HA-cystamine (CYS) hydrogels with cleavable disulfide linkages were prepared to supply HA continuously for effective bone regeneration by their controlled degradation in vivo. Among seven different samples using Bio-OSS®, MGSB, and/or several kinds of HA hydrogels, MGSB/HA-CYS hydrogels resulted in the most significant bone regeneration in the calvarial critical bone defect of New Zealand white rabbits. Histological and histomorphometric analyses revealed that the bone regeneration by MGSB/HA-CYS hydrogels was as high as 43%, occupying 71% of the bone defect area with MGSB in the form of a calvarial bone plate in 4 weeks. After that, MGSB was bioabsorbed and replaced gradually with regenerated bones as observed in 8 weeks. Synchrotron X-ray imaging clearly confirmed the effective bone regeneration by MGSB/HA-CYS hydrogels, showing three-dimensional micron-scale morphologies of regenerated bones interconnected with MGSB. In addition, sequential nondestructive synchrotron X-ray tomographic analysis results from anterior to posterior of the samples were well matched with the histomorphometric analysis results. The clinically feasible artificial bone substitutes of MGSB/HA-CYS hydrogels will be investigated further for various bone tissue engineering applications using the synchrotron X-ray bioimaging systems.


Assuntos
Substitutos Ósseos , Ácido Hialurônico , Hidrogéis , Síncrotrons , Animais , Regeneração Óssea , Microscopia Eletrônica de Varredura , Coelhos , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA