Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822069

RESUMO

Drug addiction therapies commonly fail because continued drug use promotes the release of excessive and pleasurable dopamine levels. Because the connection between pleasure and drug use becomes hard-wired in the nucleus accumbens (NAc), which interfaces motivation, effective therapies need to modulate this mesolimbic reward system. Here, we report that mice with knockdown of the cation channel TRPA1 (transient receptor potential ankyrin 1) were resistant to the drug-seeking behavior and reward effects of cocaine compared to their wildtype litter mates. In our study, we demonstrate that TRPA1 inhibition in the NAc reduces cocaine activity and dopamine release, and conversely, that TRPA1 is critical for cocaine-induced synaptic strength in dopamine receptor 1-expressing medium spiny neurons. Taken together, our data support that cocaine-induced reward-related behavior and synaptic release of dopamine in the NAc are controlled by TRPA1 and suggest that TRPA1 has therapeutic potential as a target for drug misuse therapies.

2.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108616

RESUMO

Mitochondrial oxidative phosphorylation (OXPHOS) system dysfunction in cancer cells has been exploited as a target for anti-cancer therapeutic intervention. The downregulation of CR6-interacting factor 1 (CRIF1), an essential mito-ribosomal factor, can impair mitochondrial function in various cell types. In this study, we investigated whether CRIF1 deficiency induced by siRNA and siRNA nanoparticles could suppress MCF-7 breast cancer growth and tumor development, respectively. Our results showed that CRIF1 silencing decreased the assembly of mitochondrial OXPHOS complexes I and II, which induced mitochondrial dysfunction, mitochondrial reactive oxygen species (ROS) production, mitochondrial membrane potential depolarization, and excessive mitochondrial fission. CRIF1 inhibition reduced p53-induced glycolysis and apoptosis regulator (TIGAR) expression, as well as NADPH synthesis, leading to additional increases in ROS production. The downregulation of CRIF1 suppressed cell proliferation and inhibited cell migration through the induction of G0/G1 phase cell cycle arrest in MCF-7 breast cancer cells. Similarly, the intratumoral injection of CRIF1 siRNA-encapsulated PLGA nanoparticles inhibited tumor growth, downregulated the assembly of mitochondrial OXPHOS complexes I and II, and induced the expression of cell cycle protein markers (p53, p21, and p16) in MCF-7 xenograft mice. Thus, the inhibition of mitochondrial OXPHOS protein synthesis through CRIF1 deletion destroyed mitochondrial function, leading to elevated ROS levels and inducing antitumor effects in MCF-7 cells.


Assuntos
Neoplasias da Mama , Animais , Feminino , Humanos , Camundongos , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/metabolismo , Células MCF-7 , Monoéster Fosfórico Hidrolases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Interferente Pequeno/genética , Proteína Supressora de Tumor p53 , Polietilenoglicóis/química , Nanopartículas
3.
Korean J Physiol Pharmacol ; 25(1): 59-68, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33361538

RESUMO

Arterial thrombosis and its associated diseases are considered to constitute a major healthcare problem. Arterial thrombosis, defined as blood clot formation in an artery that interrupts blood circulation, is associated with many cardiovascular diseases. Oxidative stress is one of many important factors that aggravates the pathophysiological process of arterial thrombosis. Apurinic/apyrimidinic endonuclease 1/redox factor-1 (Ref-1) has a multifunctional role in cells that includes the regulation of oxidative stress and anti-inflammatory function. The aim of this study was to investigate the therapeutic effect of adenovirus-mediated Ref-1 overexpression on arterial thrombosis induced by 60% FeCl3 solution in rats. Blood flow was measured to detect the time to occlusion, thrombus formation was detected by hematoxylin and eosin staining, reactive oxygen species (ROS) levels were detected by high-performance liquid chromatography, and the expression of tissue factor and other proteins was detected by Western blot. FeCl3 aggravated thrombus formation in carotid arteries and reduced the time to artery occlusion. Ref-1 significantly delayed arterial obstruction via the inhibition of thrombus formation, especially by downregulating tissue factor expression through the Akt-GSK3ß-NF-κB signaling pathway. Ref1 also reduced the expression of vascular inflammation markers ICAM-1 and VCAM1, and reduced the level of ROS that contributed to thrombus formation. The results showed that adenovirus-mediated Ref-1 overexpression reduced thrombus formation in the rat carotid artery. In summary, Ref-1 overexpression had anti-thrombotic effects in a carotid artery thrombosis model and could be a target for the treatment of arterial thrombosis.

4.
Biochem Biophys Res Commun ; 522(4): 869-875, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31806365

RESUMO

Inhibition of mitochondrial protein CR6 interacting factor 1 (CRIF1) disturbs mitochondrial function, depolarizes membrane potential, and increases reactive oxygen species (ROS) levels in endothelial cells. Impaired mitochondrial function accompanied by oxidative damage is a major contributor to the initiation of mitophagy. We hypothesized that CRIF1 deficiency-induced harmful effects may promote mitophagy, and explored the mechanism underlying this effect in human umbilical vein endothelial cells (HUVECs). Our results showed that CRIF1 downregulation not only induced the mitophagy-related markers LC3 (LC3-II/Ⅰ), PTEN-induced putative kinase 1 (PINK1) and parkin, but also stimulated redox enzyme p66shc expression. Scavenging mitochondrial ROS markedly blunted the CRIF1 deficiency-induced increase in p66shc expression. In addition, knockdown of p66shc inhibited the CRIF1 deletion-triggered mitochondrial ROS increase, membrane potential depolarization, and mitochondrial fusion. The restoration of mitochondrial dysfunction by p66shc downregulation also decreased CRIF1 deficiency-induced mitophagy, by elevating the levels of LC3-II/Ⅰ, PINK1 and parkin. These findings suggest that CRIF1 deficiency induces mitophagy via p66shc-regulated ROS in endothelial cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Mitofagia , Espécies Reativas de Oxigênio/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Proteínas de Ciclo Celular/deficiência , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos
5.
Biotechnol Lett ; 41(4-5): 625-632, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30927134

RESUMO

OBJECTIVE: The biochemical properties of a putative thermostable cycloisomaltooligosaccharide (CI) glucanotransferase gene from Thermoanaerobacter thermocopriae were determined using a recombinant protein (TtCITase) expressed in Escherichia coli and purified to a single protein. RESULTS: The 171-kDa protein displayed maximum activity at pH 6.0, and enzyme activity was stable at pH 5.0-11.0. The optimal temperature was 60 °C in 1 h incubation, and thermal stability of the protein was 63% at 60 °C for 24 h. TtCITase produced CI-7 to CI-17, as well as CI-18, CI-19, and CI-20, which are relatively large CIs. Additionally, an unusual kinetic feature of TtCITase was its negative cooperative behavior in the dextran T2000 cleavage reaction. CONCLUSIONS: Based on our results, TtCITase can be applied to produce relatively large CIs at high temperature.


Assuntos
Dextranos/metabolismo , Glucosiltransferases/metabolismo , Proteínas Recombinantes/metabolismo , Thermoanaerobacter/enzimologia , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosiltransferases/química , Glucosiltransferases/genética , Glucosiltransferases/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Temperatura
6.
Biochem Biophys Res Commun ; 503(3): 1805-1811, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30072100

RESUMO

Isocitrate dehydrogenase 2 (IDH2) is an essential enzyme in the mitochondrial antioxidant system, which produces nicotinamide adenine dinucleotide phosphate, and thereby defends against oxidative stress. We have shown that IDH2 downregulation results in mitochondrial dysfunction and reactive oxygen species (ROS) generation in mouse endothelial cells. The redox enzyme p66shc is a key factor in regulating the level of ROS in endothelial cells. In this study, we hypothesized that IDH2 knockdown-induced mitochondrial dysfunction stimulates endothelial inflammation, which might be regulated by p66shc-mediated oxidative stress. Our results showed that IDH2 downregulation led to mitochondrial dysfunction by decreasing the expression of mitochondrial oxidative phosphorylation complexes I, II, and IV, reducing oxygen consumption, and depolarizing mitochondrial membrane potential in human umbilical vein endothelial cells (HUVECs). The dysfunction not only increased mitochondrial ROS levels but also activated p66shc expression in HUVECs and IDH2 knockout mice. IDH2 deficiency increased intercellular adhesion molecule (ICAM)-1 expression and mRNA levels of pro-inflammatory cytokines (tumor necrosis factor [TNF]-α, and interleukin [IL]-1ß) in HUVECs. The mRNA expression of ICAM-1 in endothelial cells and plasma levels of TNF-α and IL-1ß were also markedly elevated in IDH2 knockout mice. However, p66shc knockdown rescued IDH2 deficiency-induced mitochondrial ROS levels, monocyte adhesion, ICAM-1, TNF-α, and IL-1ß expression in HUVECs. These findings suggest that IDH2 deficiency induced endothelial inflammation via p66shc-mediated mitochondrial oxidative stress.


Assuntos
Células Endoteliais/metabolismo , Inflamação/metabolismo , Isocitrato Desidrogenase/deficiência , Mitocôndrias/metabolismo , Estresse Oxidativo , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Am Heart J ; 169(6): 813-822.e3, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26027619

RESUMO

BACKGROUND: Impaired nitric oxide-mediated pulmonary vascular tone is commonly found in heart failure with reduced ejection fraction (HFrEF), and is associated with derangement of left ventricular (LV) hemodynamics and decreased exercise capacity, which may be reversed by PDE5 inhibitor. This study investigated the effects of a new, long-acting PDE5 inhibitor on LV hemodynamics and exercise capacity in HFrEF. METHODS: Patients with chronic HFrEF on optimal medical therapy for >30 days before enrollment were randomly assigned to placebo or udenafil at a dose of 50mg 2x/day for the first 4 weeks followed by 100mg 2x/day for the next 8 weeks. All patients underwent cardiopulmonary exercise echocardiography before and after the 12-week treatment. RESULTS: Improvement of subjective functional capacity was more frequently reported in the udenafil group (P = 0.002). Also, a higher increase in peak VO2 (Δpeak VO2, 21.6% (6.9 ~ 106.4%) vs 1.9% (-15.7 ~ 21.0%) in the placebo group, P = 0.04) and a larger decrease in ventilatory efficiency were observed in the udenafil group (Δ-6.4 ± 9.7 vs Δ1.9 ± 12.1 in the placebo group, P = 0.03). Regarding LV systolic function, the extent of increment in LV ejection fraction was significantly greater in the udenafil group (6.6 ± 6.4% vs 2.3 ± 4.8% in the placebo group, P = 0.02). In the udenafil group, an echocardiographic surrogate of LV filling pressure was more prominently decreased (P = 0.006) along with a significant reverse remodeling of left atrial volume index (57 ± 25mL at baseline to 44 ± 23 at 12th week, P = 0.04) and a progressive fall in B-type natriuretic peptide level (589 ± 679pg/mL at baseline to 220 ± 225pg/mL at 12th week, P < 0.001), indicating LV diastolic function improvement. Udenafil was well tolerated without excess of adverse events compared to placebo. CONCLUSIONS: Udenafil improves LV systolic/diastolic functions and exercise capacity in conjunction with established conventional pharmacotherapy, without significant adverse events in HFrEF.


Assuntos
Tolerância ao Exercício/efeitos dos fármacos , Insuficiência Cardíaca/tratamento farmacológico , Inibidores da Fosfodiesterase 5/uso terapêutico , Pirimidinas/uso terapêutico , Sulfonamidas/uso terapêutico , Disfunção Ventricular Esquerda/tratamento farmacológico , Função Ventricular Esquerda/efeitos dos fármacos , Idoso , Doença Crônica , Método Duplo-Cego , Teste de Esforço , Feminino , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica , Humanos , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio , Inibidores da Fosfodiesterase 5/efeitos adversos , Estudos Prospectivos , Pirimidinas/efeitos adversos , Sulfonamidas/efeitos adversos , Ultrassonografia , Disfunção Ventricular Esquerda/diagnóstico por imagem
8.
RSC Adv ; 14(5): 3560-3566, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38264271

RESUMO

Anti-counterfeiting (ACF) technology plays a crucial role in distinguishing genuine products from counterfeits, as well as in identity verification. Moreover, it serves as a protective measure for safeguarding the rights of individuals, companies, and governments. In this study, a high-level ACF technology was developed using a color-conversion system based on the photothermal effect of near-infrared (NIR) wavelengths. Diimonium dye (DID), which is a photothermal dye, was selected because it is an NIR absorbing dye with over 98% transparency in the visible light (vis) region. Due to the photothermal properties of DID, the temperature increased to approximately 65 °C at 1064 nm and 39 °C at 808 nm, respectively. Additionally, we employed a donor-acceptor Stenhouse adduct dye, a thermochromic dye, which exhibits reversible color change due to heat (red color) and light (colorless). Our ACF technology was applied to the brand-protecting fiber utilizing the difference in photothermal temperature according to the NIR wavelength. We successfully implemented anti-counterfeit clothing using alphabet K labels that could distinguish between genuine and counterfeit products by irradiating with specific NIR wavelengths.

9.
RSC Adv ; 14(15): 10653-10661, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38567327

RESUMO

Self-reporting systems automatically indicate damaged or corroded surfaces via color changes or fluorescence. In this study, a novel reusable self-reporting system is developed by exploiting the reversibility of a donor-acceptor Stenhouse adduct (DASA). The synthesized DASA precursor exhibits a color change when damaged upon reaction with diethylamine, and returns to its colorless form upon irradiation with visible light. Microcapsules are synthesized with a core comprising styrene and the DASA precursor, along with a shell formed of urea and formaldehyde. The optimal particle size and shell thickness of the microcapsules are 225 µm and 0.17 µm, respectively. The DASA precursor-containing microcapsules are embedded in a PEG gel matrix with secondary amine groups. This coating system, initially colorless, exhibits a color change, becoming pink after being damaged by scratching due to the reaction between the DASA precursor released from ruptured microcapsules with the secondary amine groups of the PEG gel, thus demonstrating self-reporting characteristics. Furthermore, the colored surface is restored to its initial colorless state by irradiation with visible light for 1.5 hours, demonstrating the reusability of the self-reporting system.

10.
Beilstein J Org Chem ; 9: 2470-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367415

RESUMO

The cross-coupling reactions of 2,2-difluoro-1-iodoethenyl tosylate (2) with 2 equiv of boronic acids in the presence of catalytic amounts of Pd(OAc)2 and Na2CO3 afforded the mono-coupled products 3 and 5 in high yields. The use of 4 equiv of boronic acids in the presence of catalytic amount of Pd(PPh3)2Cl2 and Na2CO3 in this reaction resulted in the formation of symmetrical di-coupled products 4 in high yields. Unsymmetrical di-coupled products 4 were obtained in high yields from the reactions of 3 with 2 equiv of boronic acids in the presence of catalytic amounts of Pd(OAc)2 and Na2CO3.

11.
Front Plant Sci ; 14: 1116426, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152118

RESUMO

Lignin is a complex polymer that is embedded in plant cell walls to provide physical support and water protection. For these reasons, the production of lignin is closely linked with plant adaptation to terrestrial regions. In response to developmental cues and external environmental conditions, plants use an elaborate regulatory network to determine the timing and location of lignin biosynthesis. In this review, we summarize the canonical lignin biosynthetic pathway and transcriptional regulatory network of lignin biosynthesis, consisting of NAC and MYB transcription factors, to explain how plants regulate lignin deposition under drought stress. Moreover, we discuss how the transcriptional network can be applied to the development of drought tolerant plants.

12.
Plast Reconstr Surg ; 151(2): 355-364, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36355029

RESUMO

BACKGROUND: The relationship between autophagy and diabetic peripheral neuropathy (DPN) has been highlighted in few reports. Using an animal model, the authors investigated the relationship between autophagy and DPN, focused particularly on changes in autophagy in Schwann cells. METHODS: The ultrastructural features of DPN mice were evaluated in vivo using transmission electron microscopy. Dysfunction of autophagy in DPN was evaluated using immunofluorescence microscopy and Western blot analysis of proteins related to autophagy, including Beclin1, LC3, and p62. Reactive oxygen species levels were measured in vitro in glucose-treated Schwann cells. Dysfunction of autophagy in glucose-treated Schwann cells was examined by immunofluorescence microscopy and Western blot analysis. RESULTS: Reduced myelin thickness and axonal shrinkage were observed in the sciatic nerves of DPN mice. Reactive oxygen species levels were increased in Schwann cells treated with high glucose ( P < 0.05). The expression of Beclin1 was increased in DPN mice and Schwann cells treated with high glucose ( P < 0.05), whereas the expression of LC3-II/LC3-I ratio and p62 were decreased in DPN mice and Schwann cells treated with high glucose ( P < 0.05). CONCLUSIONS: These results suggest that increased levels of reactive oxygen species induced by high glucose may contribute to autophagy dysfunction in Schwann cells. Autophagy dysfunction especially in Schwann cells may be an underlying cause of DPN. CLINICAL RELEVANCE STATEMENT: This study presents the pathological mechanism of diabetic peripheral neuropathy.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Camundongos , Animais , Neuropatias Diabéticas/etiologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Beclina-1/metabolismo , Células de Schwann/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Glucose/uso terapêutico , Autofagia/fisiologia
13.
Antioxidants (Basel) ; 12(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36978833

RESUMO

Endothelial senescence impairs vascular function and thus is a primary event of age-related vasculature diseases. Isocitrate dehydrogenase 2 (IDH2) plays an important role in inducing alpha-ketoglutarate (α-KG) production and preserving mitochondrial function. However, the mechanism and regulation of IDH2 in endothelial senescence have not been elucidated. We demonstrated that downregulation of IDH2 induced accumulation of miR-34b/c, which impaired mitophagy and elevated mitochondrial reactive oxygen species (ROS) levels by inhibiting mitophagy-related markers (PTEN-induced putative kinase 1 (PINK1), Parkin, LC-II/LC3-I, and p62) and attenuating Sirtuin deacetylation 3 (Sirt3) expression. The mitochondrial dysfunction induced by IDH2 deficiency disrupted cell homeostasis and the cell cycle and led to endothelial senescence. However, miR-34b/c inhibition or α-KG supplementation restored Sirt3, PINK1, Parkin, LC-II/LC3-I, p62, and mitochondrial ROS levels, subsequently alleviating endothelial senescence. We showed that IDH2 played a crucial role in regulating endothelial senescence via induction of miR-34b/c in endothelial cells.

14.
BMB Rep ; 56(2): 56-64, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36658636

RESUMO

Nitrogen (N) is an essential macronutrient required for plant growth and crop production. However, N in soil is usually insufficient for plant growth. Thus, chemical N fertilizer has been extensively used to increase crop production. Due to negative effects of N rich fertilizer on the environment, improving N usage has been a major issue in the field of plant science to achieve sustainable production of crops. For that reason, many efforts have been made to elucidate how plants regulate N uptake and utilization according to their surrounding habitat over the last 30 years. Here, we provide recent advances focusing on regulation of N uptake, allocation of N by N transporting system, and signaling pathway controlling N responses in plants. [BMB Reports 2023; 56(2): 56-64].


Assuntos
Fertilizantes , Nitrogênio , Nitrogênio/metabolismo , Fertilizantes/análise , Produtos Agrícolas/metabolismo , Solo , Transdução de Sinais
15.
Plants (Basel) ; 12(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37960036

RESUMO

The timing of floral transition is determined by both endogenous molecular pathways and external environmental conditions. Among these environmental conditions, photoperiod acts as a cue to regulate the timing of flowering in response to seasonal changes. Additionally, it has become clear that various environmental factors also control the timing of floral transition. Environmental factor acts as either a positive or negative signal to modulate the timing of flowering, thereby establishing the optimal flowering time to maximize the reproductive success of plants. This review aims to summarize the effects of environmental factors such as photoperiod, light intensity, temperature changes, vernalization, drought, and salinity on the regulation of flowering time in plants, as well as to further explain the molecular mechanisms that link environmental factors to the internal flowering time regulation pathway.

16.
Biomedicines ; 10(1)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35052866

RESUMO

Syndecan-2 (SDC2), a cell-surface heparin sulfate proteoglycan of the glycocalyx, is mainly expressed in endothelial cells. Although oxidative stress and inflammatory mediators have been shown to mediate dysfunction of the glycocalyx, little is known about their role in vascular endothelial cells. In this study, we aimed to identify the mechanism that regulates SDC2 expression in isocitrate dehydrogenase 2 (IDH2)-deficient endothelial cells, and to investigate the effect of ulinastatin (UTI) on this mechanism. We showed that knockdown of IDH2 induced SDC2 expression in human umbilical vein endothelial cells (HUVECs). Matrix metalloproteinase 7 (MMP7) influences SDC2 expression. When IDH2 was downregulated, MMP7 expression was increased, as was TGF-ß signaling, which regulates MMP7. Inhibition of MMP7 activity using MMP inhibitor II significantly reduced SDC2, suggesting that IDH2 mediated SDC2 expression via MMP7. Moreover, expression of SDC2 and MMP7, as well as TGF-ß signaling, increased in response to IDH2 deficiency, and treatment with UTI reversed this increase. Similarly, the increase in SDC2, MMP7, and TGF-ß signaling in the aorta of IDH2 knockout mice was reversed by UTI treatment. These findings suggest that IDH2 deficiency induces SDC2 expression via TGF-ß and MMP7 signaling in endothelial cells.

17.
Artigo em Inglês | MEDLINE | ID: mdl-36199546

RESUMO

Breast cancer is the most common cancer and the leading cause of cancer-related mortality among females worldwide. Triple-negative breast cancer (TNBC) accounts for about 10-15% of all breast cancers and is usually more aggressive and has a poorer prognosis. Sericite has been known to have antitumor and immune-stimulatory effects. Although the chemopreventive potential of sericite has been demonstrated in other cancers, its molecular pathways in TNBC still require investigation. Thus, in the present study, the antitumor mechanism of sericite against MDA-MB231 breast cancer cells was examined in vitro and in an in vivo xenograft mouse model. Sericite treatment reduced cell proliferation and cell proliferation marker proliferating cell nuclear antigen (PCNA) in MDA-MB231 cells. It also decreased the total cell number and arrested cells in the G0/G1 phase of the cell cycle with an increase in the phosphorylation of P53 and upregulation of cell cycle regulatory proteins P21 and P16. In addition, sericite treatment also induced apoptosis signaling, which was evident by the upregulation of apoptotic protein markers cleaved caspases 3 and 9. A reduction in reactive oxygen species (ROS), NADPH oxidase 4 (NOX4), p22phox, and heat shock proteins (HSPs) was also observed. Similar results were obtained in vivo with significantly reduced tumor volume in sericite-administered mice. Collectively, these findings suggest that sericite has antitumor potential based on its property to induce cell cycle arrest and apoptotic cell death and therefore could serve as a potential therapeutic agent and crucial candidate in anticancer drug development for TNBC.

18.
Commun Biol ; 5(1): 1002, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130994

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is associated with hepatic metabolism dysfunction. However, the mechanistic role of miR204 in the development of NAFLD is unknown. We investigate the functional significance of miR204 in the evolution of NAFLD. IDH2 KO mice feed a normal diet (ND) or HFD increased body weight, epididymal fat-pad weight, lipid droplet in liver, blood parameter and inflammation compared to WT mice fed a ND or HFD. Moreover, the expression of miR204 is increased in mice with IDH2 deficiency. Increased miR204 by IDH2 deficiency regulates carnitine palmitoyltransferase 1a (cpt1a) synthesis, which inhibits fatty acid ß-oxidation. Inhibition of miR204 prevents the disassembly of two fatty acid-related genes by activating CPT1a expression, which decreases lipid droplet in liver, inflammatory cytokines, epididymal fat pad weight, blood parameters. Increased miR204 by IDH2 deficiency promotes the pathogenesis of HFD-induced NAFLD by regulating hepatic fatty acid metabolism and inflammation.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Citocinas/metabolismo , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Inflamação/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo
19.
Sci Rep ; 11(1): 500, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436666

RESUMO

Keloids are a type of aberrant skin scarring characterized by excessive accumulation of collagen and extracellular matrix (ECM), arising from uncontrolled wound healing responses. While typically non-pathogenic, keloids are occasionally regarded as a form of benign tumor. CR6-interacting factor 1 (CRIF1) is a well-known CR6/GADD45-interacting protein, that has both nuclear and mitochondrial functions, and also exerts regulatory effects on cell growth and apoptosis. In this study, cell proliferation, cell migration, collagen production and TGF-ß signaling was compared between normal fibroblasts (NFs) and keloid fibroblasts (KFs). Subsequently, the effects of CRIF1 deficiency were investigated in both NFs and KFs. Cell proliferation, cell migration, collagen production and protein expressions of TGF-ß, phosphorylation of Smad2 and Smad3 were all found to be higher in KFs compared to NFs. CRIF1 deficiency in NFs and KFs inhibited cell proliferation, migration, and collagen production. In addition, phosphorylation of Smad2 and Smad3, which are transcription factors of collagen, was decreased. In contrast, mRNA expression levels of Smad7 and SMURF2, two important inhibitory proteins of Smad2/3, were increased, suggesting that CRIF1 may regulate collagen production. CRIF1 deficiency decreases the proliferation and migration of KFs, thereby inhibiting their overgrowth via the transforming growth factor-ß (TGF-ß)/Smad pathway. CRIF1 may therefore represent a potential therapeutic target in keloid pathogenesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fibroblastos/patologia , Queloide/patologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Adolescente , Adulto , Estudos de Casos e Controles , Ciclo Celular , Proteínas de Ciclo Celular/genética , Movimento Celular , Proliferação de Células , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Humanos , Queloide/genética , Queloide/metabolismo , Masculino , Pessoa de Meia-Idade , Fosforilação , Transdução de Sinais , Proteína Smad2/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta1/genética , Adulto Jovem
20.
Biomedicines ; 9(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430144

RESUMO

The CR6-interacting factor1 (CRIF1) mitochondrial protein is indispensable for peptide synthesis and oxidative phosphorylation. Cardiomyocyte-specific deletion of CRIF1 showed impaired mitochondrial function and cardiomyopathy. We developed an endothelial cell-specific CRIF1 deletion mouse to ascertain whether dysfunctional endothelial CRIF1 influences cardiac function and is mediated by the antioxidant protein sirtuin 1 (SIRT1). We also examined the effect of the potent SIRT1 activator SRT1720 on cardiac dysfunction. Mice with endothelial cell-specific CRIF1 deletion showed an increased heart-to-body weight ratio, increased lethality, and markedly reduced fractional shortening of the left ventricle, resulting in severe cardiac dysfunction. Moreover, endothelial cell-specific CRIF1 deletion resulted in mitochondrial dysfunction, reduced ATP levels, inflammation, and excessive oxidative stress in heart tissues, associated with decreased SIRT1 expression. Intraperitoneal injection of SRT1720 ameliorated cardiac dysfunction by activating endothelial nitric oxide synthase, reducing oxidative stress, and inhibiting inflammation. Furthermore, the decreased endothelial junction-associated protein zonula occludens-1 in CRIF1-deleted mice was significantly recovered after SRT1720 treatment. Our results suggest that endothelial CRIF1 plays an important role in maintaining cardiac function, and that SIRT1 induction could be a therapeutic strategy for endothelial dysfunction-induced cardiac dysfunction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA