Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Plant Physiol ; 194(2): 805-818, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37819034

RESUMO

Plastid-encoded RNA polymerase (PEP) plays a pivotal role in chloroplast development by governing the transcription of chloroplast genes, and PEP-associated proteins (PAPs) modulate PEP transcriptional activity. Therefore, PAPs provide an intriguing target for those efforts to improve yield, by enhancing chloroplast development. In this study, we identified the rice (Oryza sativa) OsPAP3 gene and characterized its function in chloroplast development. OsPAP3 expression was light-dependent and leaf-specific, similar to the PEP-dependent chloroplast gene RUBISCO LARGE SUBUNIT (OsRbcL), and OsPAP3 protein localized to chloroplast nucleoids where PEP functions. Analysis of loss-of-function and gain-of-function mutants showed that the expression of OsPAP3 is tightly linked to chloroplast gene expression and chloroplast biogenesis in rice. Homozygous knockout mutants of OsPAP3 had fewer chloroplasts than wild type, whereas plants overexpressing OsPAP3 had more chloroplasts. Also, OsPAP3 knockout suppressed the PEP-dependent expression of chloroplast genes, but OsPAP3 overexpression increased their expression. These findings indicate that OsPAP3 regulates chloroplast biogenesis in rice by controlling the PEP-dependent expression of chloroplast genes. More importantly, data from 3 seasons of field cultivation revealed that the overexpression of OsPAP3 improves rice grain yield by approximately 25%, largely due to increased tiller formation. Collectively, these observations suggest that OsPAP3 regulates rice growth and productivity by promoting chloroplast development.


Assuntos
Proteínas de Arabidopsis , Oryza , Oryza/genética , Oryza/metabolismo , Cloroplastos/metabolismo , Plastídeos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant Physiol ; 187(3): 1577-1586, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618030

RESUMO

The root endodermis forms a selective barrier that prevents the free diffusion of solutes into the vasculature; to make this barrier, endodermal cells deposit hydrophobic compounds in their cell walls, forming the Casparian strip. Here, we showed that, in contrast to vascular and epidermal root cells, endodermal root cells do not divide alongside the root apical meristem in Arabidopsis thaliana. Auxin treatment induced division of endodermal cells in wild-type plants, but not in the auxin signaling mutant auxin resistant3-1. Endodermis-specific activation of auxin responses by expression of truncated AUXIN-RESPONSIVE FACTOR5 (ΔARF5) in root endodermal cells under the control of the ENDODERMIS7 promoter (EN7::ΔARF5) also induced endodermal cell division. We used an auxin transport inhibitor to cause accumulation of auxin in endodermal cells, which induced endodermal cell division. In addition, knockout of P-GLYCOPROTEIN1 (PGP1) and PGP19, which mediate centripetal auxin flow, promoted the division of endodermal cells. Together, these findings reveal a tight link between the endodermal auxin response and endodermal cell division, suggesting that auxin is a key regulator controlling the division of root endodermal cells, and that PGP1 and PGP19 are involved in regulating endodermal cell division.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Divisão Celular , Ácidos Indolacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Divisão Celular/genética , Células Vegetais/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
3.
Int J Mol Sci ; 21(1)2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906415

RESUMO

To date, extensive studies have identified many classes of hormones in plants and revealed the specific, nonredundant signaling pathways for each hormone. However, plant hormone functions largely overlap in many aspects of plant development and environmental responses, suggesting that studying the crosstalk among plant hormones is key to understanding hormonal responses in plants. The phytohormone jasmonic acid (JA) is deeply involved in the regulation of plant responses to biotic and abiotic stresses. In addition, a growing number of studies suggest that JA plays an essential role in the modulation of plant growth and development under stress conditions, and crosstalk between JA and other phytohormones involved in growth and development, such as gibberellic acid (GA), cytokinin, and auxin modulate various developmental processes. This review summarizes recent findings of JA crosstalk in the modulation of plant growth and development, focusing on JA-GA, JA-cytokinin, and JA-auxin crosstalk. The molecular mechanisms underlying this crosstalk are also discussed.


Assuntos
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Desenvolvimento Vegetal/genética , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Transdução de Sinais/genética , Citocininas/genética , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Desenvolvimento Vegetal/fisiologia , Plantas/enzimologia , Plantas/genética , Transdução de Sinais/fisiologia , Estresse Fisiológico
4.
Int J Mol Sci ; 21(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155710

RESUMO

Roots anchor plants and take up water and nutrients from the soil; therefore, root development strongly affects plant growth and productivity. Moreover, increasing evidence indicates that root development is deeply involved in plant tolerance to abiotic stresses such as drought and salinity. These findings suggest that modulating root growth and development provides a potentially useful approach to improve plant abiotic stress tolerance. Such targeted approaches may avoid the yield penalties that result from growth-defense trade-offs produced by global induction of defenses against abiotic stresses. This review summarizes the developmental mechanisms underlying root development and discusses recent studies about modulation of root growth and stress tolerance in rice.


Assuntos
Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Tolerância ao Sal/genética , Água/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética
5.
Plant Biotechnol J ; 17(1): 118-131, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29781573

RESUMO

Drought stress seriously impacts on plant development and productivity. Improvement of drought tolerance without yield penalty is a great challenge in crop biotechnology. Here, we report that the rice (Oryza sativa) homeodomain-leucine zipper transcription factor gene, OsTF1L (Oryza sativa transcription factor 1-like), is a key regulator of drought tolerance mechanisms. Overexpression of the OsTF1L in rice significantly increased drought tolerance at the vegetative stages of growth and promoted both effective photosynthesis and a reduction in the water loss rate under drought conditions. Importantly, the OsTF1L overexpressing plants showed a higher drought tolerance at the reproductive stage of growth with a higher grain yield than nontransgenic controls under field-drought conditions. Genomewide analysis of OsTF1L overexpression plants revealed up-regulation of drought-inducible, stomatal movement and lignin biosynthetic genes. Overexpression of OsTF1L promoted accumulation of lignin in shoots, whereas the RNAi lines showed opposite patterns of lignin accumulation. OsTF1L is mainly expressed in outer cell layers including the epidermis, and the vasculature of the shoots, which coincides with areas of lignification. In addition, OsTF1L overexpression enhances stomatal closure under drought conditions resulted in drought tolerance. More importantly, OsTF1L directly bound to the promoters of lignin biosynthesis and drought-related genes involving poxN/PRX38, Nodulin protein, DHHC4, CASPL5B1 and AAA-type ATPase. Collectively, our results provide a new insight into the role of OsTF1L in enhancing drought tolerance through lignin biosynthesis and stomatal closure in rice.


Assuntos
Genes de Plantas/genética , Lignina/biossíntese , Oryza/genética , Estômatos de Plantas/fisiologia , Fatores de Transcrição/genética , Desidratação , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Oryza/metabolismo , Oryza/fisiologia , Filogenia , Fatores de Transcrição/fisiologia
6.
BMC Genomics ; 19(1): 40, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29329517

RESUMO

BACKGROUND: Plant stress responses and mechanisms determining tolerance are controlled by diverse sets of genes. Transcription factors (TFs) have been implicated in conferring drought tolerance under drought stress conditions, and the identification of their target genes can elucidate molecular regulatory networks that orchestrate tolerance mechanisms. RESULTS: We generated transgenic rice plants overexpressing the 4 rice TFs, OsNAC5, 6, 9, and 10, under the control of the root-specific RCc3 promoter. We showed that they were tolerant to drought stress with reduced loss of grain yield under drought conditions compared with wild type plants. To understand the molecular mechanisms underlying this tolerance, we here performed chromatin immunoprecipitation (ChIP)-Seq and RNA-Seq analyses to identify the direct target genes of the OsNAC proteins using the RCc3:6MYC-OsNAC expressing roots. A total of 475 binding loci for the 4 OsNAC proteins were identified by cross-referencing their binding to promoter regions and the expression levels of the corresponding genes. The binding loci were distributed among the promoter regions of 391 target genes that were directly up-regulated by one of the OsNAC proteins in four RCc3:6MYC-OsNAC transgenic lines. Based on gene ontology (GO) analysis, the direct target genes were related to transmembrane/transporter activity, vesicle, plant hormones, carbohydrate metabolism, and TFs. The direct targets of each OsNAC range from 4.0-8.7% of the total number of up-regulated genes found in the RNA-Seq data sets. Thus, each OsNAC up-regulates a set of direct target genes that alter root system architecture in the RCc3:OsNAC plants to confer drought tolerance. Our results provide a valuable resource for functional dissection of the molecular mechanisms of drought tolerance. CONCLUSIONS: Many of the target genes, including transmembrane/transporter, vesicle related, auxin/hormone related, carbohydrate metabolic processes, and transcription factor genes, that are up-regulated by OsNACs act as the cellular components which would alter the root architectures of RCc3:OsNACs for drought tolerance.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla/métodos , Oryza/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/metabolismo , Imunoprecipitação da Cromatina/métodos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Domínios Proteicos , Análise de Sequência de RNA/métodos , Estresse Fisiológico , Fatores de Transcrição/genética
7.
Plant Biotechnol J ; 15(6): 754-764, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27892643

RESUMO

Drought has a serious impact on agriculture worldwide. A plant's ability to adapt to rhizosphere drought stress requires reprogramming of root growth and development. Although physiological studies have documented the root adaption for tolerance to the drought stress, underlying molecular mechanisms is still incomplete, which is essential for crop engineering. Here, we identified OsNAC6-mediated root structural adaptations, including increased root number and root diameter, which enhanced drought tolerance. Multiyear drought field tests demonstrated that the grain yield of OsNAC6 root-specific overexpressing transgenic rice lines was less affected by drought stress than were nontransgenic controls. Genome-wide analyses of loss- and gain-of-function mutants revealed that OsNAC6 up-regulates the expression of direct target genes involved in membrane modification, nicotianamine (NA) biosynthesis, glutathione relocation, 3'-phophoadenosine 5'-phosphosulphate accumulation and glycosylation, which represent multiple drought tolerance pathways. Moreover, overexpression of NICOTIANAMINE SYNTHASE genes, direct targets of OsNAC6, promoted the accumulation of the metal chelator NA and, consequently, drought tolerance. Collectively, OsNAC6 orchestrates novel molecular drought tolerance mechanisms and has potential for the biotechnological development of high-yielding crops under water-limiting conditions.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Biotecnologia , Secas , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Oryza/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética
8.
BMC Genomics ; 17: 563, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27501838

RESUMO

BACKGROUND: Plant transcriptome profiling has provided a tool for understanding the mechanisms by which plants respond to stress conditions. Analysis of genome-wide transcriptome will provides a useful dataset of drought responsive noncoding RNAs and their candidate target genes that may be involved in drought stress responses. RESULTS: Here RNA-seq analyses of leaves from drought stressed rice plants was performed, producing differential expression profiles of noncoding RNAs. We found that the transcript levels of 66 miRNAs changed significantly in response to drought conditions and that they were negatively correlated with putative target genes during the treatments. The negative correlations were further validated by qRT-PCR using total RNAs from both drought-treated leaves and various tissues at different developmental stages. The drought responsive miRNA/target pairs were confirmed by the presence of decay intermediates generated by miRNA-guided cleavages in Parallel Analysis of RNA Ends (PARE) libraries. We observed that the precursor miR171f produced two different mature miRNAs, miR171f-5p and miR171f-3p with 4 candidate target genes, the former of which was responsive to drought conditions. We found that the expression levels of the miR171f precursor negatively correlated with those of one candidate target gene, but not with the others, suggesting that miR171f-5p was drought-responsive, with Os03g0828701-00 being a likely target. Pre-miRNA expression profiling indicated that miR171f is involved in the progression of rice root development and growth, as well as the response to drought stress. Ninety-eight lncRNAs were also identified, together with their corresponding antisense transcripts, some of which were responsive to drought conditions. CONCLUSIONS: We identified rice noncoding RNAs (66 miRNAs and 98 lncRNAs), whose expression was highly regulated by drought stress conditions, and whose transcript levels negatively correlated with putative target genes.


Assuntos
Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oryza/genética , RNA não Traduzido , Estresse Fisiológico/genética , Transcriptoma , Adaptação Biológica , MicroRNAs/genética , Fenótipo , Interferência de RNA , RNA Antissenso/genética
9.
Planta ; 241(6): 1529-41, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25809149

RESUMO

MAIN CONCLUSION: We have characterized four novel constitutive promoters ARP1, H3F3, HSP and H2BF3 that are active in all tissues/stages of transgenic plants and stable over two homozygous generations. Gene promoters that are active and stable over several generations in transgenic plants are valuable tools for plant research and biotechnology. In this study, we characterized four putative constitutive promoters (ARP1, H3F3, HSP and H2BF3) in transgenic rice plants. Promoter regions were fused to the green fluorescence protein (GFP) reporter gene and transformed into rice. Single-copy transgenic lines were then selected and promoter activity was analyzed in various organs and tissues of two successive homozygous generations. All four promoters showed a broad expression profile in most tissues and developmental stages, and indeed the expression of the ARP1 and H3F3 promoters was even greater than that of the PGD1 promoter, a previously described constitutive promoter that has been used in transgenic rice. This observation was based on expression levels in leaves, roots, dry seeds and flowers in both the T2 and T3 generations. Each promoter exhibited comparable levels of activity over two homozygous generations with no sign of transgene silencing, which is an important characteristic of promoters to be used in crop biotechnology applications. These promoters therefore have considerable potential value for the stable and constitutive expression of transgenes in monocotyledonous crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/genética , Regiões Promotoras Genéticas , Genoma de Planta , Proteínas de Fluorescência Verde/metabolismo , Homozigoto , Especificidade de Órgãos/genética , Oryza/crescimento & desenvolvimento , Plantas Geneticamente Modificadas
10.
Plant J ; 73(3): 483-95, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23067202

RESUMO

The role of AtMYB44, an R2R3 MYB transcription factor, in signaling mediated by jasmonic acid (JA) and salicylic acid (SA) is examined. AtMYB44 is induced by JA through CORONATINE INSENSITIVE 1 (COI1). AtMYB44 over-expression down-regulated defense responses against the necrotrophic pathogen Alternaria brassicicola, but up-regulated WRKY70 and PR genes, leading to enhanced resistance to the biotrophic pathogen Pseudomonas syringae pv. tomato DC3000. The knockout mutant atmyb44 shows opposite effects. Induction of WRKY70 by SA is reduced in atmyb44 and npr1-1 mutants, and is totally abolished in atmyb44 npr1-1 double mutants, showing that WRKY70 is regulated independently through both NPR1 and AtMYB44. AtMYB44 over-expression does not change SA content, but AtMYB44 over-expression phenotypes, such as retarded growth, up-regulated PR1 and down-regulated PDF1.2 are reversed by SA depletion. The wrky70 mutation suppressed AtMYB44 over-expression phenotypes, including up-regulation of PR1 expression and down-regulation of PDF1.2 expression. ß-estradiol-induced expression of AtMYB44 led to WRKY70 activation and thus PR1 activation. AtMYB44 binds to the WRKY70 promoter region, indicating that AtMYB44 acts as a transcriptional activator of WRKY70 by directly binding to a conserved sequence element in the WRKY70 promoter. These results demonstrate that AtMYB44 modulates antagonistic interaction by activating SA-mediated defenses and repressing JA-mediated defenses through direct control of WRKY70.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Arabidopsis/genética , Regulação para Baixo , Genes de Plantas , Regiões Promotoras Genéticas
11.
Proc Natl Acad Sci U S A ; 108(19): 8036-41, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21518870

RESUMO

Transcriptional repression via methylation of histone H3 lysine 27 (H3K27) by the polycomb repressive complex 2 (PRC2) is conserved in higher eukaryotes. The Arabidopsis PRC2 controls homeotic gene expression, flowering time, and gene imprinting. Although downstream target genes and the regulatory mechanism of PRC2 are well understood, much less is known about the significance of posttranslational regulation of PRC2 protein activity. Here, we show the posttranslational regulation of CURLY LEAF (CLF) SET-domain polycomb group (PcG) protein by the F-box protein, UPWARD CURLY LEAF1 (UCL1). Overexpression of UCL1 generates mutant phenotypes similar to those observed in plants with a loss-of-function mutation in the CLF gene. Leaf curling and early flowering phenotypes of UCL1 overexpression mutants, like clf mutants, are rescued by mutations in the AGAMOUS and FLOWERING LOCUS T genes, which is consistent with UCL1 and CLF functioning in the same genetic pathway. Overexpression of UCL1 reduces the level of CLF protein and alters expression and H3K27 methylation of CLF-target genes in transgenic plants, suggesting that UCL1 negatively regulates CLF. Interaction of UCL1 with CLF was detected in plant nuclei and in the yeast two-hybrid system. The UCL1 F-box binds in vivo to components of the E3 ligase complex, which ubiquitylate proteins that are subsequently degraded via the ubiquitin-26S proteasome pathway. Taken together, these results demonstrate the posttranslational regulation of the CLF SET-domain PcG activity by the UCL1 F-box protein in the E3 ligase complex.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Sequência de Bases , DNA de Plantas/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Histonas/metabolismo , Mutação , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Proteínas do Grupo Polycomb , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/genética , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/genética
12.
Plant Biotechnol J ; 11(1): 101-14, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23094910

RESUMO

Drought conditions are among the most serious challenges to crop production worldwide. Here, we report the results of field evaluations of transgenic rice plants overexpressing OsNAC5, under the control of either the root-specific (RCc3) or constitutive (GOS2) promoters. Field evaluations over three growing seasons revealed that the grain yield of the RCc3:OsNAC5 and GOS2:OsNAC5 plants were increased by 9%-23% and 9%-26% under normal conditions, respectively. Under drought conditions, however, RCc3:OsNAC5 plants showed a significantly higher grain yield of 22%-63%, whilst the GOS2:OsNAC5 plants showed a reduced or similar yield to the nontransgenic (NT) controls. Both the RCc3:OsNAC5 and GOS2:OsNAC5 plants were found to have larger roots due to an enlarged stele and aerenchyma at flowering stage. Cell numbers per cortex layer and stele of developing roots were higher in both transgenic plants than NT controls, contributing to the increase in root diameter. The root diameter was enlarged to a greater extent in the RCc3:OsNAC5, suggesting the importance of this phenotype for enhanced drought tolerance. Microarray experiments identified 25 up-regulated genes by more than three-fold (P < 0.01) in the roots of both transgenic lines. Also identified were 19 and 18 up-regulated genes that are specific to the RCc3:OsNAC5 and GOS2:OsNAC5 roots, respectively. Of the genes specifically up-regulated in the RCc3:OsNAC5 roots, GLP, PDX, MERI5 and O-methyltransferase were implicated in root growth and development. Our present findings demonstrate that the root-specific overexpression of OsNAC5 enlarges roots significantly and thereby enhances drought tolerance and grain yield under field conditions.


Assuntos
Secas , Oryza/crescimento & desenvolvimento , Oryza/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Fenótipo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Sementes/genética , Estresse Fisiológico
13.
PLoS Pathog ; 7(10): e1002310, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22028654

RESUMO

Fusarium graminearum is an important plant pathogen that causes head blight of major cereal crops. The fungus produces mycotoxins that are harmful to animal and human. In this study, a systematic analysis of 17 phenotypes of the mutants in 657 Fusarium graminearum genes encoding putative transcription factors (TFs) resulted in a database of over 11,000 phenotypes (phenome). This database provides comprehensive insights into how this cereal pathogen of global significance regulates traits important for growth, development, stress response, pathogenesis, and toxin production and how transcriptional regulations of these traits are interconnected. In-depth analysis of TFs involved in sexual development revealed that mutations causing defects in perithecia development frequently affect multiple other phenotypes, and the TFs associated with sexual development tend to be highly conserved in the fungal kingdom. Besides providing many new insights into understanding the function of F. graminearum TFs, this mutant library and phenome will be a valuable resource for characterizing the gene expression network in this fungus and serve as a reference for studying how different fungi have evolved to control various cellular processes at the transcriptional level.


Assuntos
Fusarium/genética , Genoma Fúngico , Doenças das Plantas/genética , Triticum/microbiologia , Fusarium/metabolismo , Fusarium/patogenicidade , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Mutação , Fenótipo , Doenças das Plantas/microbiologia , Fenômenos Fisiológicos Vegetais , Sexo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Plant Physiol ; 159(2): 696-709, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22544867

RESUMO

Brassinosteroids (BRs) are a group of steroidal hormones involved in plant development. Although the BR biosynthesis pathways are well characterized, the BR inactivation process, which contributes to BR homeostasis, is less understood. Here, we show that a member of the BAHD (for benzylalcohol O-acetyltransferase, anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase, and deacetylvindoline 4-O-acetyltransferase) acyltransferase family may play a role in BR homeostasis in Arabidopsis (Arabidopsis thaliana). We isolated two gain-of-function mutants, brassinosteroid inactivator1-1Dominant (bia1-1D) and bia1-2D, in which a novel BAHD acyltransferase-like protein was transcriptionally activated. Both mutants exhibited dwarfism, reduced male fertility, and deetiolation in darkness, which are typical phenotypes of plants defective in BR biosynthesis. Exogenous BR treatment rescued the phenotypes of the bia1-1D mutant. Endogenous levels of BRs were reduced in the bia1-1D mutant, demonstrating that BIA1 regulates endogenous BR levels. When grown in darkness, the bia1 loss-of-function mutant showed a longer hypocotyl phenotype and was more responsive to exogenous BR treatment than the wild-type plant. BIA1 expression was predominantly observed in the root, where low levels of BRs were detected. These results indicate that the BAHD acyltransferase family member encoded by BIA1 plays a role in controlling BR levels, particularly in the root and hypocotyl in darkness. Taken together, our study provides new insights into a mechanism that maintains BR homeostasis in Arabidopsis, likely via acyl conjugation of BRs.


Assuntos
Aciltransferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Brassinosteroides/biossíntese , Aciltransferases/genética , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Brassinosteroides/farmacologia , Escuridão , Fertilidade , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Homeostase , Hipocótilo/efeitos dos fármacos , Hipocótilo/enzimologia , Hipocótilo/genética , Dados de Sequência Molecular , Fenótipo , Filogenia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Protoplastos/metabolismo , Transdução de Sinais , Ativação Transcricional
15.
Plant J ; 65(6): 907-21, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21332845

RESUMO

Jasmonates play important roles in development, stress responses and defense in plants. Here, we report the results of a study using a functional genomics approach that identified a rice basic helix-loop-helix domain gene, OsbHLH148, that conferred drought tolerance as a component of the jasmonate signaling module in rice. OsbHLH148 transcript levels were rapidly increased by treatment with methyl jasmonate (MeJA) or abscisic acid, and abiotic stresses including dehydration, high salinity, low temperature and wounding. Transgenic over-expression of OsbHLH148 in rice confers plant tolerance to drought stress. Expression profiling followed by DNA microarray and RNA gel-blot analyses of transgenic versus wild-type rice identified genes that are up-regulated by OsbHLH148 over-expression. These include OsDREB and OsJAZ genes that are involved in stress responses and the jasmonate signaling pathway, respectively. OsJAZ1, a rice ZIM domain protein, interacted with OsbHLH148 in yeast two-hybrid and pull-down assays, but it interacted with the putative OsCOI1 only in the presence of coronatine. Furthermore, the OsJAZ1 protein was degraded by rice and Arabidopsis extracts in the presence of coronatine, and its degradation was inhibited by MG132, a 26S proteasome inhibitor, suggesting 26S proteasome-mediated degradation of OsJAZ1 via the SCF(OsCOI1) complex. The transcription level of OsJAZ1 increased upon exposure of rice to MeJA. These results show that OsJAZ1 could act as a transcriptional regulator of the OsbHLH148-related jasmonate signaling pathway leading to drought tolerance. Thus, our study suggests that OsbHLH148 acts on an initial response of jasmonate-regulated gene expression toward drought tolerance, constituting the OsbHLH148-OsJAZ-OsCOI1 signaling module in rice.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ciclopentanos/metabolismo , Oryza/genética , Oryza/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , DNA de Plantas/genética , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Modelos Biológicos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Plantas Geneticamente Modificadas , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Estresse Fisiológico , Regulação para Cima
16.
Transgenic Res ; 20(1): 153-63, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20490919

RESUMO

There is currently a shortage of efficient promoters for stress-inducible gene expression, especially in monocotyledonous crops. Here, we report analysis of the rice Wsi18 promoter, a member of the group 3 Lea family, in transgenic rice plants. The abundance of Wsi18 mRNA increased in leaf tissues within 2 h of exposure to NaCl or abscisic acid (ABA) and within 6 h of exposure to drought, but there was no transcript increase in response to low-temperature conditions. Wsi18 mRNA accumulated in the roots similarly to in the leaves, but at a faster rate. The promoter was linked to the GFP reporter gene, transformed into rice, and its activity was analyzed in transgenic plants at all stages of plant growth from calli, vegetative tissues, flowers, and to dry seeds, both before and after stress treatment. The activity of the promoter was significantly increased in the whole plant body, including flowers, on exposure of plants to stress conditions, with very low levels of basal activity in all tissues. Moreover, the promoter was found to be predominantly active in the whole grain, including endosperm, embryo, and aleurone layer during seed development. Together, we have identified and analyzed the Wsi18 promoter and found a previously undescribed characteristic-a stress-inducible property in the whole plant body with activity in the whole grain during seed development.


Assuntos
Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Oryza/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Ácido Abscísico/farmacologia , Sequência de Bases , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Folhas de Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/crescimento & desenvolvimento , Cloreto de Sódio/farmacologia
17.
Planta ; 232(3): 743-54, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20567981

RESUMO

There are few efficient promoters for use with stress-inducible gene expression in plants, and in particular for monocotyledonous crops. Here, we report the identification of six genes, Rab21, Wsi18, Lea3, Uge1, Dip1, and R1G1B that were induced by drought stress in rice microarray experiments. Gene promoters were linked to the gfp reporter and their activities were analyzed in transgenic rice plants throughout all stages of plant growth, from dry seeds to vegetative tissues to flowers, both before and after drought treatments. In fold induction levels, Rab21 and Wsi18 promoters ranged from 65- and 36-fold in leaves to 1,355- and 492-fold in flowers, respectively, whereas Lea3 and Uge1 were higher in leaves, but lower in roots and flowers, as compared with Rab21 and Wsi18. Dip1 and R1G1B promoters had higher basal levels of activity under normal growth conditions in all tissues, resulting in smaller fold-induction levels than those of the others. In drought treatment time course, activities of Dip1 and R1G1B promoters rapidly increased, peaked at 2 h, and remained constant until 8 h, while that of Lea3 slowly yet steadily increased until 8 h. Interestingly, Rab21 activity increased rapidly and steadily in response to drought stress until expression peaked at 8 h. Thus, we have isolated and characterized six rice promoters that are all distinct in fold induction, tissue specificity, and induction kinetics under drought conditions, providing a variety of drought-inducible promoters for crop biotechnology.


Assuntos
Secas , Oryza/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Southern Blotting , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Oryza/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Reação em Cadeia da Polimerase
18.
J Exp Bot ; 61(9): 2459-67, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20363869

RESUMO

Novel constitutive gene promoters are essential components of crop biotechnology. Our analysis of five such promoters, APX, SCP1, PGD1, R1G1B, and EIF5, in transgenic rice plants is reported here. The five promoter regions were linked to the gfp reporter gene and transformed into rice. Using fluorescent microscopy and q-RT-PCR, promoter activities were analysed in comparison with OsCc1, Act1, and ZmUbi1, previously characterized as strong constitutive promoters. The APX and PGD1 promoters direct high levels of gene expression in all tissues and stages, producing GFP at levels of up to 1.3% of the total soluble protein. PGD1 is particularly active in flowers and mature roots. The R1G1B is active in the whole grain including the embryo, endosperm, and aleurone layer, and thus represents a constitutive promoter with activity in whole seeds that has not been described previously. The ZmUbi1 and R1G1B promoters are markedly less active in young roots and mature leaves whilst the APX, PGD1, OsCc1, and Act1 promoters are highly active in both vegetative and reproductive tissues. Overall, our results demonstrate that APX, PGD1, and R1G1B are novel gene promoters that are highly active at all stages of plant growth with distinct levels of activity.


Assuntos
Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
19.
J Bacteriol ; 191(11): 3758-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19329631

RESUMO

Burkholderia glumae is the causative agent of grain and seedling rot in rice and of bacterial wilt in many field crops. Here, we report the complete genome sequence of B. glumae BGR1 isolated from a diseased rice panicle in Korea.


Assuntos
Burkholderia/genética , Genoma Bacteriano/genética , Cromossomos Bacterianos/genética , Dados de Sequência Molecular , Plasmídeos/genética
20.
BMC Mol Biol ; 10: 91, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19761621

RESUMO

BACKGROUND: The interaction between a transcription factor and DNA motif (cis-acting element) is an important regulatory step in gene regulation. Comprehensive genome-wide methods have been developed to characterize protein-DNA interactions. Recently, the universal protein binding microarray (PBM) was introduced to determine if a DNA motif interacts with proteins in a genome-wide manner. RESULTS: We facilitated the PBM technology using a DsRed fluorescent protein and a concatenated sequence of oligonucleotides. The PBM was designed in such a way that target probes were synthesized as quadruples of all possible 9-mer combinations, permitting unequivocal interpretation of the cis-acting elements. The complimentary DNA strands of the features were synthesized with a primer and DNA polymerase on microarray slides. Proteins were labeled via N-terminal fusion with DsRed fluorescent protein, which circumvents the need for a multi-step incubation. The PBM presented herein confirmed the well-known DNA binding sequences of Cbf1 and CBF1/DREB1B, and it was also applied to elucidate the unidentified cis-acting element of the OsNAC6 rice transcription factor. CONCLUSION: Our method demonstrated PBM can be conveniently performed by adopting: (1) quadruple 9-mers may increase protein-DNA binding interactions in the microarray, and (2) a one-step incubation shortens the wash and hybridization steps. This technology will facilitate greater understanding of genome-wide interactions between proteins and DNA.


Assuntos
Proteínas Luminescentes/metabolismo , Oligonucleotídeos/metabolismo , Análise Serial de Proteínas/métodos , Motivos de Aminoácidos , Sítios de Ligação , Proteínas Luminescentes/genética , Oligonucleotídeos/genética , Oryza/química , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA