Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Biomed Sci ; 30(1): 26, 2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37088847

RESUMO

BACKGROUND: Although mRNA dysregulation can induce changes in mesenchymal stem cell (MSC) homeostasis, the mechanisms by which post-transcriptional regulation influences MSC differentiation potential remain understudied. PUMILIO2 (PUM2) represses translation by binding target mRNAs in a sequence-specific manner. METHODS: In vitro osteogenic differentiation assays were conducted using human bone marrow-derived MSCs. Alkaline phosphatase and alizarin red S staining were used to evaluate the osteogenic potential of MSCs. A rat xenograft model featuring a calvarial defect to examine effects of MSC-driven bone regeneration. RNA-immunoprecipitation (RNA-IP) assay was used to determine the interaction between PUM2 protein and Distal-Less Homeobox 5 (DLX5) mRNA. Ovariectomized (OVX) mice were employed to evaluate the effect of gene therapy for postmenopausal osteoporosis. RESULTS: Here, we elucidated the molecular mechanism of PUM2 in MSC osteogenesis and evaluated the applicability of PUM2 knockdown (KD) as a potential cell-based or gene therapy. PUM2 level was downregulated during MSC osteogenic differentiation, and PUM2 KD enhanced MSC osteogenic potential. Following PUM2 KD, MSCs were transplanted onto calvarial defects in 12-week-old rats; after 8 weeks, transplanted MSCs promoted bone regeneration. PUM2 KD upregulated the expression of DLX5 mRNA and protein and the reporter activity of its 3'-untranslated region. RNA-IP revealed direct binding of PUM2 to DLX5 mRNA. We then evaluated the potential of adeno-associated virus serotype 9 (AAV9)-siPum2 as a gene therapy for osteoporosis in OVX mice. CONCLUSION: Our findings suggest a novel role for PUM2 in MSC osteogenesis and highlight the potential of PUM2 KD-MSCs in bone regeneration. Additionally, we showed that AAV9-siPum2 is a potential gene therapy for osteoporosis.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Humanos , Ratos , Camundongos , Animais , Osteogênese/genética , Regulação para Baixo , Diferenciação Celular , Regeneração Óssea/genética , RNA , RNA Mensageiro/metabolismo , Células Cultivadas , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
Biochem Biophys Res Commun ; 467(4): 1026-32, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26456654

RESUMO

Resveratrol is a sirtuin 1 (SIRT1) activator and can function as an anti-inflammatory and antioxidant factor. In mesenchymal stem cells (MSCs), resveratrol enhances the proliferation and differentiation potential and has an anti-aging effect. However, contradictory effects of resveratrol on MSC cultures have been reported. In this study, we found that resveratrol had different effects on MSC cultures according to their cell passage and SIRT1 expression. Resveratrol enhanced the self-renewal potential and multipotency of early passage MSCs, but accelerated cellular senescence of late passage MSCs. In early passage MSCs expressing SIRT1, resveratrol decreased ERK and GSK-3ß phosphorylation, suppressing ß-catenin activity. In contrast, in late passage MSCs, which did not express SIRT1, resveratrol increased ERK and GSK-3ß phosphorylation, activating ß-catenin. We confirmed that SIRT1-deficient early passage MSCs treated with resveratrol lost their self-renewal potential and multipotency, and became senescent due to increased ß-catenin activity. Sustained treatment with resveratrol at early passages maintained the self-renewal potential and multipotency of MSCs up to passage 10. Our findings suggest that resveratrol can be effectively applied to early passage MSC cultures, whereas parameters such as cell passage and SIRT1 expression must be taken into consideration before applying resveratrol to late passage MSCs.


Assuntos
Células-Tronco Mesenquimais/efeitos dos fármacos , Estilbenos/farmacologia , beta Catenina/metabolismo , Adulto , Senescência Celular/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/metabolismo , Resveratrol
3.
Stem Cells ; 32(12): 3219-31, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25132403

RESUMO

SOX2 is crucial for the maintenance of the self-renewal capacity and multipotency of mesenchymal stem cells (MSCs); however, the mechanism by which SOX2 is regulated remains unclear. Here, we report that RNA interference of sirtuin 1 (SIRT1) in human bone marrow (BM)-derived MSCs leads to a decrease of SOX2 protein, resulting in the deterioration of the self-renewal and differentiation capacities of BM-MSCs. Using immunoprecipitation, we demonstrated direct binding between SIRT1 and SOX2 in HeLa cells overexpressing SOX2. We further discovered that the RNA interference of SIRT1 induces the acetylation, nuclear export, and ubiquitination of SOX2, leading to proteasomal degradation in BM-MSCs. SOX2 suppression by trichostatin A (TSA), a known histone deacetylase inhibitor, was reverted by treatment with resveratrol (0.1 and 1 µM), a known activator of SIRT1 in BM-MSCs. Furthermore, 0.1 and 1 µM resveratrol reduced TSA-mediated acetylation and ubiquitination of SOX2 in BM-MSCs. SIRT1 activation by resveratrol enhanced the colony-forming ability and differentiation potential to osteogenic and adipogenic lineages in a dose-dependent manner. However, the enhancement of self-renewal and multipotency by resveratrol was significantly decreased to basal levels by RNA interference of SOX2. These results strongly suggest that the SIRT1-SOX2 axis plays an important role in maintaining the self-renewal capability and multipotency of BM-MSCs. In conclusion, our findings provide evidence for positive SOX2 regulation by post-translational modification in BM-MSCs through the inhibition of nuclear export and subsequent ubiquitination, and demonstrate that SIRT1-mediated deacetylation contributes to maintaining SOX2 protein in the nucleus.


Assuntos
Células da Medula Óssea/citologia , Medula Óssea/metabolismo , Diferenciação Celular/fisiologia , Autorrenovação Celular , Células-Tronco Mesenquimais/citologia , Fatores de Transcrição SOXB1/metabolismo , Sirtuína 1/metabolismo , Adulto , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Proliferação de Células/fisiologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Interferência de RNA/fisiologia
4.
J Phys Ther Sci ; 26(1): 87-91, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24567682

RESUMO

[Purpose] The purpose of this study was to investigate thoracic coupled motions of 20 Korean young individuals. [Methods] Thoracic motion of twenty healthy male college students aged 23.2±3.1 was examined. The coupled motions of the thoracic regions T1-4, T4-8, T8-12 were measured using a three dimensional motion capture system. [Results] Coupled axial rotation in the same direction as lateral bending was observed in T1-T4 and T4-T8 in the neutral, flexed, and extended postures of the thoracic spine. In T8-T12, coupled axial rotation in the same direction as lateral bending were observed in the neutral and flexed postures, while coupled axial rotation in the opposite direction was observed in an extended posture. [Conclusion] The patterns of coupled motions in the thoracic spine demonstrated some variability between postures and regions in vivo. However, coupled motions in the same direction were predominantly lateral flexion or axial rotation in the three postures.

5.
Cell Death Differ ; 29(7): 1364-1378, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35034101

RESUMO

Dysfunction of mRNA or RNA-binding proteins (RBPs) causes cellular aging and age-related degenerative diseases; however, information regarding the mechanism through which RBP-mediated posttranscriptional regulation affects cellular aging and related disease processes is limited. In this study, PUM1 was found to be associated with the self-renewal capacity and aging process of human mesenchymal stem cells (MSC). PUM1 interacted with the 3'-untranslated region of Toll-like receptor 4 (TLR4) to suppress TLR4 mRNA translation and regulate the activity of nuclear factor-κB (NF-κB), a master regulator of the aging process in MSCs. PUM1 overexpression protected MSCs against H2O2-induced cellular senescence by suppressing TLR4-mediated NF-κB activity. TLR4-mediated NF-κB activation is a key regulator in osteoarthritis (OA) pathogenesis. PUM1 overexpression enhanced the chondrogenic potential of MSCs even under the influence of inflammation-inducing factors, such as lipopolysaccharide (LPS) or interleukin-1ß (IL-1ß), whereas the chondrogenic potential was reduced following the PUM1 knockdown-mediated TLR4 activation. PUM1 levels decreased under inflammatory conditions in vitro and during OA progression in human and mouse disease models. PUM1 knockdown in human chondrocytes promoted chondrogenic phenotype loss, whereas PUM1 overexpression protected the cells from inflammation-mediated disruption of the chondrogenic phenotype. Gene therapy using a lentiviral vector encoding mouse PUM1 showed promise in preserving articular cartilage integrity in OA mouse models. In conclusion, PUM1 is a novel suppressor of MSC aging, and the PUM1-TLR4 regulatory axis represents a potential therapeutic target for OA.


Assuntos
Senescência Celular , Osteoartrite , Proteínas de Ligação a RNA , Receptor 4 Toll-Like , Animais , Regulação para Baixo , Humanos , Peróxido de Hidrogênio/metabolismo , Inflamação , Interleucina-1beta/metabolismo , Camundongos , NF-kappa B/metabolismo , Osteoartrite/genética , Osteoartrite/patologia , Osteoartrite/terapia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
6.
Tissue Eng Regen Med ; 18(4): 499-511, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34260047

RESUMO

Exosomes are cell-secreted nano-sized vesicles which deliver diverse biological molecules for intercellular communication. Due to their therapeutic potential, exosomes have been engineered in numerous ways for efficient delivery of active pharmaceutical ingredients to various target organs, tissues, and cells. In vivo administered exosomes are normally delivered to the liver, spleen, kidney, lung, and gastrointestinal tract and show rapid clearance from the blood circulation after systemic injection. The biodistribution and pharmacokinetics (PK) of exosomes can be modulated by engineering various factors such as cellular origin and membrane protein composition of exosomes. Recent advances accentuate the potential of targeted delivery of engineered exosomes even to the most challenging organs including the central nervous system. Major breakthroughs have been made related to various imaging techniques for monitoring in vivo biodistribution and PK of exosomes, as well as exosomal surface engineering technologies for inducing targetability. For inducing targeted delivery, therapeutic exosomes can be engineered to express various targeting moieties via direct modification methods such as chemically modifying exosomal surfaces with covalent/non-covalent bonds, or via indirect modification methods by genetically engineering exosome-producing cells. In this review, we describe the current knowledge of biodistribution and PK of exosomes, factors determining the targetability and organotropism of exosomes, and imaging technologies to monitor in vivo administered exosomes. In addition, we highlight recent advances in strategies for inducing targeted delivery of exosomes to specific organs and cells.


Assuntos
Exossomos , Transporte Biológico , Comunicação Celular , Sistemas de Liberação de Medicamentos , Distribuição Tecidual
7.
Aging Cell ; 18(1): e12867, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30575269

RESUMO

Resveratrol (RSV) extends the lifespan of various organisms through activation of sirtuin. However, whether RSV-mediated longevity is entirely dependent upon sirtuin is still controversial. Thus, understanding additional mechanisms concerning the genetic requirements for the biological activity of RSV needs to be clarified to utilize the beneficial effects of RSV. In this study using Caenorhabditis elegans as a model system, we found that MPK-1 (an ERK homolog) signaling is necessarily required for RSV-mediated longevity of sir-2.1/sirtuin mutants as well as for wild-type worms. We demonstrated that MPK-1 contributes to RSV-mediated longevity through nuclear accumulation of SKN-1 in a SIR-2.1/DAF-16 pathway-independent manner. The positive effect of RSV in regulating lifespan was completely abolished by RNA interference against mpk-1 in the sir-2.1 and daf-16 mutants, strongly indicating that the MPK-1/SKN-1 pathway is involved in RSV-mediated longevity, independently of SIR-2.1/DAF-16. We additionally found that RSV protected worms from oxidative stress via MPK-1. In addition to organismal aging, RSV prevented the age-associated loss of mitotic germ cells, brood size, and reproductive span through MPK-1 in C. elegans germline. Therefore, our findings not only provide new mechanistic insight into the controversial effects of RSV on organismal longevity, but additionally have important implications in utilizing RSV to improve the outcome of aging-related diseases.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/fisiologia , Longevidade/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Resveratrol/farmacologia , Animais , Caenorhabditis elegans/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Mutação/genética , Reprodução/efeitos dos fármacos , Resveratrol/química
8.
Aging Dis ; 10(4): 818-833, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31440387

RESUMO

Mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine. However, MSCs age rapidly during long-term ex vivo culture and lose their therapeutic potential before they reach effective cell doses (ECD) for cell therapy. Thus, a prerequisite for effective MSC therapy is the development of cell culture methods to preserve the therapeutic potential during long-term ex vivo cultivation. Resveratrol (RSV) has been highlighted as a therapeutic candidate for bone disease. Although RSV treatment has beneficial effects on bone-forming cells, in vivo studies are lacking. The current study showed that long-term (6 weeks from primary culture date)-cultured MSCs with RSV induction retained their proliferative and differentiation potential despite reaching ECD. The mechanism of RSV action depends entirely on the SIRT1-SOX2 axis in MSC culture. In a rat calvarial defect model, RSV induction significantly improved bone regeneration after MSC transplantation. This study demonstrated an example of efficient MSC therapy for treating bone defects by providing a new strategy using the plant polyphenol RSV.

9.
Stem Cells Dev ; 27(16): 1125-1135, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29848179

RESUMO

The crucial trace element zinc stimulates osteogenesis in vitro and in vivo. However, the pathways mediating these effects remain poorly understood. This study aimed to investigate the effects of zinc on osteoblast differentiation in human bone marrow-derived mesenchymal stem cells (hBMSCs) and to identify the molecular mechanisms of these effects. In hBMSCs, zinc exposure resulted in a dose-dependent increase in osteogenesis and increased mRNA and protein levels of the master transcriptional factor RUNX2. Analyzing the upstream signaling pathways of RUNX2, we found that protein kinase A (PKA) signaling inhibition blocked zinc-induced osteogenic effects. Zinc exposure increased transcriptional activity and protein levels of phospho-CREB and enhanced translocation of phospho-CREB into the nucleus. These effects were reversed by H-89, a potent inhibitor of PKA. Moreover, zinc exposure led to dose-dependent increases in levels of intracellular cyclic adenosine monophosphate (cAMP). These findings indicate that zinc activates the PKA signaling pathway by triggering an increase in intracellular cAMP, leading to enhanced osteogenic differentiation in hBMSCs. Our results suggest that zinc exerts osteogenic effects in hBMSCs by activation of RUNX2 via the cAMP-PKA-CREB signaling pathway. Zinc supplementation may offer a promise as a potential pharmaceutical therapy for osteoporosis and other bone loss conditions.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Zinco/farmacologia , AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Humanos , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Transdução de Sinais/efeitos dos fármacos
10.
Cell Death Dis ; 9(9): 866, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158625

RESUMO

To investigate the functional effects of resveratrol (RSV) on mesenchymal stem cells (MSCs), we treated MSCs with RSV continuously during ex vivo expansion. MSCs were continuously treated with RSV from passage (P) 0 to P5. A proliferative capacity of RSV-treated MSCs was higher than that of non-treated MSCs and similar with P1-MSCs. Continuous treatment of RSV on MSCs increased the stemness and inhibited the senescence. During chondrogenic differentiation in vitro, RSV-treated MSCs had higher differentiation potential and reduced hypertrophic maturation, which are limitations for hyaline cartilage formation. The histological analysis of micromass demonstrated increased chondrogenic differentiation potential. We further explored the therapeutic effectiveness of this method in a rabbit osteochondral defect model. A rabbit osteochondral defect model was established to investigate the hyaline cartilage regeneration potential of RSV-treated MSCs. Moreover, the cartilage regeneration potential of RSV-treated MSCs was greater than that of untreated MSCs. The expression levels of chondrogenic markers increased and those of hypertrophic markers decreased in RSV-treated MSCs compared with untreated MSCs. Sustained treatment of RSV on MSCs during ex vivo expansion resulted in the maintenance of stemness and enhanced chondrogenic differentiation potential. Consequentially, highly efficient MSCs promoted superior hyaline cartilage regeneration in vivo. This novel treatment method provides a basis for cell-based tissue engineering.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Gelatina/farmacologia , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Sirtuína 1/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Coelhos , Resveratrol/farmacologia , Engenharia Tecidual/métodos
11.
Acta Biomater ; 66: 325-334, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29203426

RESUMO

Diabetes mellitus comprises a multiple metabolic disorder that affects millions of people worldwide and consequentially poses challenges for clinical treatment. Among the various complications, diabetic ulcer constitutes the most prevalent associated disorder and leads to delayed wound healing. To enhance wound healing capacity, we developed structurally stabilized epidermal growth factor (ST-EGF) and basic fibroblast growth factor (ST-bFGF) to overcome limitations of commercially available EGF (CA-EGF) and bFGF (CA-bFGF), such as short half-life and loss of activity after loading onto a matrix. Neither ST-EGF nor ST-bFGF was toxic, and both were more stable at higher temperatures than CA-EGF and CA-bFGF. We loaded ST-EGF and ST-bFGF onto a hyaluronate-collagen dressing (HCD) matrix, a biocompatible carrier, and tested the effectiveness of this system in promoting wound healing in a mouse model of diabetes. Wounds treated with HCD matrix loaded with 0.3 µg/cm2 ST-EGF or 1 µg/cm2 ST-bFGF showed a more rapid rate of tissue repair as compared to the control in type I and II diabetes models. Our results indicate that an HDC matrix loaded with 0.3 µg/cm2 ST-EGF or 1 µg/cm2 ST-bFGF can promote wound healing in diabetic ulcers and are suitable for use in wound dressings owing to their stability for long periods at room temperature. STATEMENT OF SIGNIFICANCE: Various types of dressing materials loaded with growth factors, such as VEGF, EGF, and bFGF, are widely used to effect wound repair. However, such growth factor-loaded materials have several limitations for use as therapeutic agents in healing-impaired diabetic wounds. To overcome these limitations, we have developed new materials containing structurally stabilized EGF (ST-EGF) and bFGF (ST-bFGF). To confirm the wound healing capacity of newly developed materials (ST-EGF and ST-bFGF-loaded hyaluronate-collagen dressing [HCD] matrix), we applied these matrices in type I and type II diabetic wounds. Notably, these matrices were able to accelerate wound healing including re-epithelialization, neovascularization, and collagen deposition. Consequentially, these ST-EGF and ST-bFGF-loaded HCD matrix may be used as future therapeutic agents in patients with diabetic foot ulcers.


Assuntos
Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/patologia , Fator de Crescimento Epidérmico/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Cicatrização/efeitos dos fármacos , Células 3T3 , Animais , Bandagens , Colágeno/química , Modelos Animais de Doenças , Humanos , Ácido Hialurônico/química , Masculino , Camundongos , Camundongos Endogâmicos ICR
13.
Sci Rep ; 7(1): 12592, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974696

RESUMO

Triclosan (TCS), an antimicrobial chemical with potential endocrine-disrupting properties, may pose a risk to early embryonic development and cellular homeostasis during adulthood. Here, we show that TCS induces toxicity in both the nematode C. elegans and human mesenchymal stem cells (hMSCs) by disrupting the SKN-1/Nrf2-mediated oxidative stress response. Specifically, TCS exposure affected C. elegans survival and hMSC proliferation in a dose-dependent manner. Cellular analysis showed that TCS inhibited the nuclear localization of SKN-1/Nrf2 and the expression of its target genes, which were associated with oxidative stress response. Notably, TCS-induced toxicity was significantly reduced by either antioxidant treatment or constitutive SKN-1/Nrf2 activation. As Nrf2 is strongly associated with aging and chemoresistance, these findings will provide a novel approach to the identification of therapeutic targets and disease treatment.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/genética , Fatores de Transcrição/genética , Triclosan/farmacologia , Animais , Antioxidantes/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Relação Dose-Resposta a Droga , Disruptores Endócrinos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
14.
Tissue Eng Part A ; 22(3-4): 363-74, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26871861

RESUMO

The objective of this study was to determine whether a biphasic scaffold loaded with a combination of a chemokine and bone marrow concentrate (BMC) could improve tissue regeneration in knee articular cartilage of beagles with cylindrical osteochondral defects. For this investigation, an osteochondral defect (6 mm in diameter and 8 mm deep) was created in the weight-bearing articular surface of the femoral medial condyle in beagles. Bone marrow was aspirated from the posterior iliac crests of beagles to obtain mesenchymal stem cells (MSCs) for in vitro assay. Hematoxylin and eosin (HE), Masson's trichrome (MT), safranin O/fast green staining, and immunohistochemistry were performed for histological analysis. Quantitative real-time polymerase chain reaction was performed to understand the roles of BMC in chondrogenic differentiation of MSCs. At 12 weeks after transplantation of biphasic scaffolds, we observed that interleukin-8 (IL-8) or the combination of IL-8 and BMC induced massive bone regeneration compared to saline, BMC only, and MSCs. In gross appearance, the osteochondral defect site was nearly completely filled with repair tissue in the group that received the combination of IL-8 and BMC but not in the other groups. Moreover, histological analysis showed obvious differences in cartilage regeneration among groups. HE and MT staining showed that the cartilage defect sites of the group receiving the combination of IL-8 and BMC were regenerated with cartilage-like tissues showing chondrocyte morphology. Safranin O staining showed hyaline cartilage regeneration in the group receiving IL-8 and BMC, whereas fibrous-like tissues were formed in the other groups. Furthermore, immunostaining revealed the presence of type II collagen and aggrecan in regenerated cartilage tissue of the group receiving IL-8 and BMC, whereas regenerated cartilage tissues of the other groups weakly expressed type II collagen and aggrecan. These results indicate that the combination of a chemokine IL-8 and BMC has significant positive effects on osteochondral regeneration in a beagle model through enhancing expression of the chondrogenic transcription factors and markers such as Sox9 and type II collagen.


Assuntos
Medula Óssea/química , Cartilagem/fisiologia , Condrogênese/efeitos dos fármacos , Interleucina-8/farmacologia , Células-Tronco Mesenquimais/metabolismo , Regeneração/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Cães , Articulação do Joelho/fisiologia , Masculino
15.
Acta Biomater ; 38: 59-68, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27109762

RESUMO

UNLABELLED: In this study, we developed horseradish peroxidase (HRP)-catalyzed sprayable gelatin hydrogels (GH) as a bioactive wound dressing that can deliver cell-attracting chemotactic cytokines to the injured tissues for diabetic wound healing. We hypothesized that topical administration of chemokines using GH hydrogels might improve wound healing by inducing recruitment of the endogenous cells. Two types of chemokines (interleukin-8; IL-8, macrophage inflammatory protein-3α; MIP-3α) were simply loaded into GH hydrogels during in situ cross-linking, and then their wound-healing effects were evaluated in streptozotocin-induced diabetic mice. The incorporation of chemokines did not affect hydrogels properties including swelling ratio and mechanical stiffness, and the bioactivities of IL-8 and MIP-3α released from hydrogel matrices were stably maintained. In vivo transplantation of chemokine-loaded GH hydrogels facilitated cell infiltration into the wound area, and promoted wound healing with enhanced re-epithelialization/neovascularization and increased collagen deposition, compared with no treatment or the GH hydrogel alone. Based on our results, we suggest that cell-recruiting chemokine-loaded GH hydrogel dressing can serve as a delivery platform of various therapeutic proteins for wound healing applications. STATEMENT OF SIGNIFICANCE: Despite development of materials combined with therapeutic agents for diabetic wound treatment, impaired wound healing by insufficient chemotactic responses still remain as a significant problem. In this study, we have developed enzyme-catalyzed gelatin (GH) hydrogels as a sprayable dressing material that can deliver cell-attracting chemokines for diabetic wound healing. The chemotactic cytokines (IL-8 and MIP-3α) were simply loaded within hydrogel during in situ gelling, and wound healing efficacy of chemokine-loaded GH hydrogels was investigated in STZ-induced diabetic mouse model. These hydrogels significantly promoted wound-healing efficacy with faster wound closure, neovascularization, and thicker granulation. Therefore, we expect that HRP-catalyzed in situ forming GH hydrogels can serve as an injectable/sprayable carrier of various therapeutic agents for wound healing applications.


Assuntos
Quimiocina CCL20 , Diabetes Mellitus Experimental/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Gelatina , Hidrogéis , Interleucina-8 , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/tratamento farmacológico , Animais , Quimiocina CCL20/química , Quimiocina CCL20/farmacologia , Gelatina/química , Gelatina/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Interleucina-8/química , Interleucina-8/farmacologia , Camundongos , Camundongos Endogâmicos ICR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA