Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Acc Chem Res ; 55(10): 1372-1382, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35230801

RESUMO

ConspectusSingle-atom catalysts (SACs), in which surface metal atoms are isolated on the surface of a support, have received a tremendous amount of attention recently because this structure would utilize precious metals fully, without occluding atoms inside nanoparticles, and enable unique surface reactions which typical nanoparticle catalysts cannot induce. Various synthesis methods and characterization techniques have been reported that yield enhanced activity and selectivity. The single-atom structures were realized on various supports such as metal oxide/carbide/nitride, porous materials derived from zeolite or metal-organic frameworks, and carbon-based materials. Additionally, when the metal atoms are isolated on other metal nanoparticles, this material is denoted as a single-atom alloy (SAA). The single-atom structure, however, cannot catalyze the surface reaction that necessitates ensemble sites, where several metal atoms are located nearby. Very recently, ensemble catalysts, in which all of the metal atoms are exposed at the surface with neighboring metal atoms, have been reported, overcoming the limitation of single-atom catalysts. We call all of these materials (SACs, SAAs, and ensemble catalyst) heterogeneous atomic catalysts, indicating that the surface metal atomic structure is intentionally controlled. To use these atomic catalysts for practical applications, high durability should be guaranteed, which has received relatively less attention.In this Account, we discuss recent examples of heterogeneous atomic catalysts with high durability. Structural stability, indicating whether the surface atomic structure is thermodynamically stable, should be carefully considered. Typically, metal atoms are immobilized on a highly defective support, stabilizing both the metal atom and the support. The surface metal atoms might become destabilized upon the adsorption of chemical intermediates. This transient behavior should be carefully monitored; density functional theory (DFT) calculations are particularly useful in estimating this stability. Aside from structural stability, the catalyst performance can be degraded significantly by poisoning with impurities. If the single-atom sites are susceptible to impurities with stronger adsorption, the surface reaction would not occur efficiently, leading to a decrease in activity without structure degradation. A long-term durability test should be performed for target reactions. Heterogeneous atomic catalysts have been used for various electrochemical, photocatalytic, and thermal reactions. Although electricity, light, and heat are just different forms of energy, the specific conditions which the catalyst should satisfy are different. Whereas precious metal atoms are mostly used as surface-active sites, the properties of the support are different depending on the type of reaction. For example, the support should have high conductivity for electrochemical reactions, it should be able to absorb light for photocatalytic reactions, and it should be durable at high temperature in the presence of steam for thermal reactions. Highly durable heterogeneous atomic catalysts are certainly possible with a great potential for practical applications. These new catalysts can accelerate the current paradigm shift toward more sustainable chemical production.

2.
Angew Chem Int Ed Engl ; 62(30): e202306017, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37243414

RESUMO

Inducing strong metal-support interaction (SMSI) has been a useful way to control the structure of surface active sites. The SMSI often causes the encapsulation of metal particles with an oxide layer. Herein, an amorphous ceria shell was formed on Cu nanoparticles under a mild gas condition with high activity and durability for surface reaction. Cu-Ce solid solution promoted the transfer of surface oxygen species, which induced the ceria shell formation on Cu nanoparticles. This catalyst was used for CO2 hydrogenation, selectively producing CO with high low-temperature activity and good durability for operation at high temperature. CO2 activation and H2 spillover could occur at low temperatures, enhancing the activity. The shell prevented the sintering, assuring durability. This catalyst was applied to a bench-scale reactor without loss in performance, resulting in high CO productivity in all temperature ranges.

3.
Ecol Lett ; 24(9): 1869-1879, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34174001

RESUMO

Climatic gradients frequently predict large-scale ecogeographical patterns in animal coloration, but the underlying causes are often difficult to disentangle. We examined ecogeographical patterns of reflectance among 343 European butterfly species and isolated the role of selection for thermal benefits by comparing animal-visible and near-infrared (NIR) wavebands. NIR light accounts for ~50% of solar energy but cannot be seen by animals so functions primarily in thermal control. We found that reflectance of both dorsal and ventral surfaces shows thermally adaptive correlations with climatic factors including temperature and precipitation. This adaptive variation was more prominent in NIR than animal-visible wavebands and for body regions (thorax-abdomen and basal wings) that are most important for thermoregulation. Thermal environments also predicted the reflectance difference between dorsal and ventral surfaces, which may be due to modulation between requirements for heating and cooling. These results highlight the importance of climatic gradients in shaping the reflectance properties of butterflies at a continent-wide scale.


Assuntos
Borboletas , Animais , Regulação da Temperatura Corporal , Luz Solar , Temperatura , Asas de Animais
4.
Molecules ; 23(10)2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30301280

RESUMO

This article describes the design, synthesis, and in vitro anti-inflammatory screening of new triarylpyrazole derivatives. A total of 34 new compounds were synthesized containing a terminal arylsulfonamide moiety and a different linker between the sulfonamide and pyridine ring at position 4 of the pyrazole ring. All the target compounds were tested for both cytotoxicity and nitric oxide (NO) production inhibition in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Compounds 1b, 1d, 1g, 2a, and 2c showed the highest NO inhibition percentages and the lowest cytotoxic effect. The most potent derivatives were tested for their ability to inhibit prostaglandin E2 (PGE2) in LPS-induced RAW 264.7 macrophages. The IC50 for nitric oxide inhibition, PGE2 inhibition, and cell viability were determined. In addition, 1b, 1d, 1g, 2a, and 2c were tested for their inhibitory effect on LPS-induced inducible nitric oxide synthase (iNOS) and Cyclooxygenase 2 (COX-2) protein expression as well as iNOS enzymatic activity.


Assuntos
Dinoprostona/química , Macrófagos/química , Óxido Nítrico/química , Pirazóis/síntese química , Animais , Ciclo-Oxigenase 2/genética , Dinoprostona/antagonistas & inibidores , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Camundongos , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Pirazóis/química , Pirazóis/farmacologia , Células RAW 264.7 , Sulfonamidas/síntese química , Sulfonamidas/química , Sulfonamidas/farmacologia
5.
Mol Immunol ; 166: 1-15, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176167

RESUMO

Histone deacetylase 6 (HDAC6) has been shown to play an important role in allergic inflammation. This study hypothesized that novel downstream targets of HDAC6 would mediate allergic inflammation. Experiments employing HDAC6 knock out C57BL/6 mice showed that HDAC6 mediated passive cutaneous anaphylaxis (PCA) and passive systemic anaphylaxis (PSA). Antigen stimulation increased expression of N-myc (MYCN) and CXCL3 in an HDAC6-dependent manner in the bone marrow-derived mast cells. MYCN and CXCL3 were necessary for both PCA and PSA. The role of early growth response 3 (EGR3) in the regulation of HDAC6 expression has been reported. ChIP assays showed EGR3 as a direct regulator of MYCN. miR-34a-5p was predicted to be a negative regulator of MYCN. Luciferase activity assays showed miR-34a-5p as a direct regulator of MYCN. miR-34a-5p mimic negatively regulated PCA and PSA. MYCN decreased miR-34a-5p expression in antigen-stimulated rat basophilic leukemia cells (RBL2H3). MYCN was shown to bind to the promoter sequence of CXCL3. In an IgE-independent manner, recombinant CXCL3 protein increased expression of HDAC6, MYCN, and ß-hexosaminidase activity in RBL2H3 cells. Mouse recombinant CXCL3 protein enhanced the angiogenic potential of the culture medium of RBL2H3. CXCL3 was necessary for the enhanced angiogenic potential of the culture medium of antigen-stimulated RBL2H3. The culture medium of RBL2H3 was able to induce M2 macrophage polarization in a CXCL3-dependent manner. Recombinant CXCL3 protein also increased the expression of markers of M2 macrophage. Thus, the identification of the novel role of HDAC6-MYCN-CXCL3 axis can help better understand the pathogenesis of anaphylaxis.


Assuntos
Anafilaxia , MicroRNAs , Ratos , Camundongos , Animais , Proteína Proto-Oncogênica N-Myc/metabolismo , Desacetilase 6 de Histona/metabolismo , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mastócitos/metabolismo
6.
JACS Au ; 2(5): 1115-1122, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35647595

RESUMO

Strong metal-support interaction (SMSI) is a promising strategy to control the structure of the supported metal catalyst. Especially, encapsulating metal nanoparticles through SMSI can enhance resistance against sintering but typically blocks the access of reactants onto the metal surface. Here, we report gas-permeable shells formed on Rh nanoparticles with enhanced activity and durability for the surface reaction. First, Fe species were doped into ceria, enhancing the transfer of surface oxygen species. When Rh was deposited onto the Fe-doped ceria (FC) and reduced, a shell was formed on Rh nanoparticles. Diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS) results show that the shell is formed upon reduction and removed upon oxidation reversibly. CO adsorption on the Rh surface through the shell was confirmed by cryo-DRIFTS. The reverse water gas shift (RWGS) reaction (CO2 + H2 → CO + H2O) occurred on the encapsulated Rh nanoparticles effectively with selective CO formation, whereas bare Rh nanoparticles deposited on ceria produced methane as well. The CO adsorption became much weaker on the encapsulated Rh nanoparticles, and H2-spillover occurred more on the FC, resulting in high activity for RWGS. The exposed Rh nanoparticles deposited on ceria presented degradation at 400 °C after 150 h of RWGS, whereas the encapsulated Rh nanoparticles showed no degradation with superior durability. Enhancing surface oxygen transfer can be an efficient way to form gas-permeable overlayers on metal nanoparticles with high activity and durability.

7.
Front Pharmacol ; 12: 691279, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34588978

RESUMO

Histone deacetylase 6 (HDAC6) has been known to regulate inflammatory diseases. The role of HDAC6 in allergic skin inflammation has not been studied. We studied the role of HDAC6 in atopic dermatitis (AD) and the mechanisms associated with it. The decreased expression or chemical inhibition of HDAC6 suppressed AD by decreasing autophagic flux and cellular features of AD. AD increased expression levels of the Th1 and Th2 cytokines, but decreased expression levels of forkhead box P3 (FoxP3) and interleukin-10 (IL-10) in an HDAC6-dependent manner. CXC chemokine ligand 13 (CXCL13), which was increased in an HDAC6-depenednt manner, mediated AD. MiR-9, negatively regulated by HDAC6, suppressed AD by directly regulating the expression of sirtuin 1 (SIRT1). The downregulation or inhibition of SIRT1 suppressed AD. Experiments employing culture medium and transwell suggested that cellular interactions involving mast cells, keratinocytes, and dermal fibroblast cells could promote AD; HDAC6 and CXCL13 were found to be necessary for these cellular interactions. Mouse recombinant CXCL13 protein increased HDAC6 expression in skin mast cells and dermal fibroblast cells. CXCL13 protein was found to be present in the exosomes of DNCB-treated skin mast cells. Exosomes of DNCB-treated skin mast cells enhanced invasion potentials of keratinocytes and dermal fibroblast cells and increased expression levels of HDAC6, SIRT1 and CXCL13 in keratinocytes and dermal fibroblast cells. These results indicate that HDAC6 and CXCL13 may serve as targets for the developing anti-atopic drugs.

8.
ACS Appl Mater Interfaces ; 13(41): 48508-48515, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34612622

RESUMO

The ex-solution phenomenon has received attention as a promising technique to prepare highly durable heterogeneous catalysts. Perovskite materials have been mainly used as host oxides for ex-solution, but their small surface areas have limited their practical use. Here, Rh was ex-solved by reducing Rh-doped ceria solid solution, and nanosized Rh catalysts with a high surface area of 70.7 m2/g were prepared. The Rh nanoparticles ex-solved from the ceria nanodomains were directly monitored by in situ transmission electron microscopy. The Rh nanoparticles whose sizes are 2-3 nm were not coarsened during the propane steam reforming process carried out at 700 °C for 65 h, leading to high resistance against sintering and coke formation. On the contrary, the Rh catalyst simply deposited on CeO2 was significantly sintered after the reaction, and the size of Rh nanoparticles increased to 25 nm, resulting in severe coke formation. Our work shows that ex-solution from a ceria-based nanodomain can be a good way to prepare metal nanoparticle catalysts with a large surface area and excellent durability for gas-phase reactions at high temperatures.

9.
Aging Cell ; 20(1): e13300, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33382195

RESUMO

Dietary restriction extends lifespan in various organisms by reducing the levels of both nutrients and non-nutritional food-derived cues. However, the identity of specific food-derived chemical cues that alter lifespan remains unclear. Here, we identified several volatile attractants that decreased the longevity on food deprivation, a dietary restriction regimen in Caenorhabditis elegans. In particular, we found that the odor of diacetyl decreased the activity of DAF-16/FOXO, a life-extending transcription factor acting downstream of insulin/IGF-1 signaling. We then demonstrated that the odor of lactic acid bacteria, which produce diacetyl, reduced the nuclear accumulation of DAF-16/FOXO. Unexpectedly, we showed that the odor of diacetyl decreased longevity independently of two established diacetyl receptors, ODR-10 and SRI-14, in sensory neurons. Thus, diacetyl, a food-derived odorant, may shorten food deprivation-induced longevity via decreasing the activity of DAF-16/FOXO through binding to unidentified receptors.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Diacetil/efeitos adversos , Fatores de Transcrição Forkhead/metabolismo , Odorantes/análise , Animais , Dietoterapia , Regulação para Baixo , Longevidade
10.
Integr Comp Biol ; 60(5): 1320-1329, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32533827

RESUMO

A substantial body of research has been accumulated around ammonoids over several decades. A core aspect of this research has been attempting to infer their life mode from analysis of the morphology of their shells and the drag they incur as that shell is pushed through the water. Tools such as Westermann Morphospace have been developed to investigate and scaffold hypotheses about the results of these investigations. We use computational fluid dynamics to simulate fluid flow around a suite of 24 theoretical ammonoid morphologies to interrogate systematic variations within this space. Our findings uphold some of the long-standing expectations of drag behavior; conch inflation has the greatest influence over ammonoid drag. However, we also find that other long-standing assumptions, such as oxyconic ammonoids being the best swimmers, are subject to substantial variation and nuance resulting from their morphology that is not accounted for through simple drag assessment.


Assuntos
Exoesqueleto/anatomia & histologia , Hidrodinâmica , Moluscos , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA