RESUMO
For mAbs to be viable therapeutics, they must be formulated to have low viscosity, be chemically stable, and have normal in vivo clearance rates. We explored these properties by observing correlations of up to 60 different antibodies of the IgG1 isotype. Unexpectedly, we observe significant correlations with simple physical properties obtainable from antibody sequences and by molecular dynamics simulations of individual antibody molecules. mAbs viscosities increase strongly with hydrophobicity and charge dipole distribution and decrease with net charge. Fast clearance correlates with high hydrophobicities of certain complementarity determining regions and with high positive or high negative net charge. Chemical degradation from tryptophan oxidation correlates with the average solvent exposure time of tryptophan residues. Aspartic acid isomerization rates can be predicted from solvent exposure and flexibility as determined by molecular dynamics simulations. These studies should aid in more rapid screening and selection of mAb candidates during early discovery.
Assuntos
Anticorpos Monoclonais/química , Imunoglobulina G/química , Animais , Anticorpos Monoclonais/uso terapêutico , Células CHO , Cricetinae , Cricetulus , Humanos , Imunoglobulina G/uso terapêutico , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/uso terapêutico , ViscosidadeRESUMO
Peptoid molecules are biomimetic oligomers that can fold into unique three-dimensional structures. As part of an effort to advance computational design of folded oligomers, we present blind-structure predictions for three peptoid sequences using a combination of Replica Exchange Molecular Dynamics (REMD) simulation and Quantum Mechanical refinement. We correctly predicted the structure of a N-aryl peptoid trimer to within 0.2 Å rmsd-backbone and a cyclic peptoid nonamer to an accuracy of 1.0 Å rmsd-backbone. X-ray crystallographic structures are presented for a linear N-alkyl peptoid trimer and for the cyclic peptoid nonamer. The peptoid macrocycle structure features a combination of cis and trans backbone amides, significant nonplanarity of the amide bonds, and a unique "basket" arrangement of (S)-N(1-phenylethyl) side chains encompassing a bound ethanol molecule. REMD simulations of the peptoid trimers reveal that well folded peptoids can exhibit funnel-like conformational free energy landscapes similar to those for ordered polypeptides. These results indicate that physical modeling can successfully perform de novo structure prediction for small peptoid molecules.
Assuntos
Modelos Moleculares , Peptoides/química , Conformação Proteica , Dobramento de Proteína , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Polímeros/químicaRESUMO
SUMMARY: An ultrafast DNA sequence aligner (Isaac Genome Alignment Software) that takes advantage of high-memory hardware (>48 GB) and variant caller (Isaac Variant Caller) have been developed. We demonstrate that our combined pipeline (Isaac) is four to five times faster than BWA + GATK on equivalent hardware, with comparable accuracy as measured by trio conflict rates and sensitivity. We further show that Isaac is effective in the detection of disease-causing variants and can easily/economically be run on commodity hardware. AVAILABILITY: Isaac has an open source license and can be obtained at https://github.com/sequencing.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Software , Variação Genética , Genoma Humano , HumanosRESUMO
OBJECTIVE: To validate the performance of a novel, integrated test for canine cancer screening that combines cell-free DNA quantification with next-generation sequencing (NGS) analysis. SAMPLE: Retrospective data from a total of 1,947 cancer-diagnosed and presumably cancer-free dogs were used to validate test performance for the detection of 7 predefined cancer types (lymphoma, hemangiosarcoma, osteosarcoma, leukemia, histiocytic sarcoma, primary lung tumors, and urothelial carcinoma), using independent training and testing sets. METHODS: Cell-free DNA quantification data from all samples were analyzed using a proprietary machine learning algorithm to determine a Cancer Probability Index (High, Moderate, or Low). High and Low Probability of Cancer were final result classifications. Moderate cases were additionally analyzed by NGS to arrive at a final classification of High Probability of Cancer (Cancer Signal Detected) or Low Probability of Cancer (Cancer Signal Not Detected). RESULTS: Of the 595 dogs in the testing set, 89% (n = 530) received a High or Low Probability result based on the machine learning algorithm; 11% (65) were Moderate Probability, and NGS results were used to assign a final classification. Overall, 87 of 122 dogs with the 7 predefined cancer types were classified as High Probability and 467 of 473 presumably cancer-free dogs were classified as Low Probability, corresponding to a sensitivity of 71.3% for the predefined cancer types at a specificity of 98.7%. CLINICAL RELEVANCE: This integrated test offers a novel option to screen for cancer types that may be difficult to detect by physical examination at a dog's wellness visit.
RESUMO
OBJECTIVE: The purpose of this study was to evaluate the performance of a next-generation sequencing-based liquid biopsy test for cancer monitoring in dogs. SAMPLES: Pre- and postoperative blood samples were collected from dogs with confirmed cancer diagnoses originally enrolled in the CANcer Detection in Dogs (CANDiD) study. A subset of dogs also had longitudinal blood samples collected for recurrence monitoring. METHODS: All cancer-diagnosed patients had a preoperative blood sample in which a cancer signal was detected and had at least 1 postoperative sample collected. Clinical data were used to assign a clinical disease status for each follow-up visit. RESULTS: Following excisional surgery, in the absence of clinical residual disease at the postoperative visit, patients with Cancer Signal Detected results at that visit were 1.94 times as likely (95% CI, 1.21 to 3.12; P = .013) to have clinical recurrence within 6 months compared to patients with Cancer Signal Not Detected results. In the subset of patients with longitudinal liquid biopsy samples that had clinical recurrence documented during the study period, 82% (9/11; 95% CI, 48% to 97%) had Cancer Signal Detected in blood prior to or concomitant with clinical recurrence; in the 6 patients where molecular recurrence was detected prior to clinical recurrence, the median lead time was 168 days (range, 47 to 238). CLINICAL RELEVANCE: Next-generation sequencing-based liquid biopsy is a noninvasive tool that may offer utility as an adjunct to current standard-of-care clinical assessment for cancer monitoring; further studies are needed to confirm diagnostic accuracy in a larger population.
RESUMO
The goal of cancer screening is to detect disease at an early stage when treatment may be more effective. Cancer screening in dogs has relied upon annual physical examinations and routine laboratory tests, which are largely inadequate for detecting preclinical disease. With the introduction of non-invasive liquid biopsy cancer detection methods, the discussion is shifting from how to screen dogs for cancer to when to screen dogs for cancer. To address this question, we analyzed data from 3,452 cancer-diagnosed dogs to determine the age at which dogs of certain breeds and weights are typically diagnosed with cancer. In our study population, the median age at cancer diagnosis was 8.8 years, with males diagnosed at younger ages than females, and neutered dogs diagnosed at significantly later ages than intact dogs. Overall, weight was inversely correlated with age at cancer diagnosis, and purebred dogs were diagnosed at significantly younger ages than mixed-breed dogs. For breeds represented by ≥10 dogs, a breed-based median age at diagnosis was calculated. A weight-based linear regression model was developed to predict the median age at diagnosis for breeds represented by ≤10 dogs and for mixed-breed dogs. Our findings, combined with findings from previous studies which established a long duration of the preclinical phase of cancer development in dogs, suggest that it might be reasonable to consider annual cancer screening starting 2 years prior to the median age at cancer diagnosis for dogs of similar breed or weight. This logic would support a general recommendation to start cancer screening for all dogs at the age of 7, and as early as age 4 for breeds with a lower median age at cancer diagnosis, in order to increase the likelihood of early detection and treatment.
Assuntos
Doenças do Cão , Neoplasias , Humanos , Feminino , Masculino , Cães , Animais , Detecção Precoce de Câncer , Neoplasias/diagnóstico , Neoplasias/veterinária , Registros , Doenças do Cão/diagnóstico , Doenças do Cão/epidemiologiaRESUMO
Age-related somatic genomic alterations in hematopoietic cell lines have been well characterized in humans; however, this phenomenon has not been well studied in other species. Next-generation sequencing-based liquid biopsy testing for cancer detection was recently developed for dogs and has been used to study the genomic profiles of blood samples from thousands of canine patients since 2021. In this study, 4870 client-owned dogs with and without a diagnosis or suspicion of cancer underwent liquid biopsy testing by this method. Copy number variants detected exclusively in genomic DNA derived from white blood cells (WBC gDNA-specific CNVs) were observed in 126 dogs (2.6%; 95% CI: 2.2-3.1); these copy number variants were absent from matched plasma cell-free DNA, and from tumor tissue in dogs with concurrent cancer. These findings were more common in older dogs and were persistent in WBC gDNA in over 70% of patients, with little to no change in the amplitude of the signal across longitudinal samples. Many of these alterations were observed at recurrent locations in the genome across subjects; the most common finding was a partial loss on CFA25, typically accompanied by a partial gain on the same chromosome. These early findings suggest that age-related somatic alterations may be present at an appreciable frequency in the general canine population. Further research is needed to determine the clinical significance of these findings.
RESUMO
BACKGROUND: Guidelines-driven screening protocols for early cancer detection in dogs are lacking, and cancer often is detected at advanced stages. HYPOTHESIS/OBJECTIVES: To examine how cancer typically is detected in dogs and whether the addition of a next-generation sequencing-based "liquid biopsy" test to a wellness visit has the potential to enhance cancer detection. ANIMALS: Client-owned dogs with definitive cancer diagnoses enrolled in a clinical validation study for a novel blood-based multicancer early detection test. METHODS: Retrospective medical record review was performed to establish the history and presenting complaint that ultimately led to a definitive cancer diagnosis. Blood samples were subjected to DNA extraction, library preparation, and next-generation sequencing. Sequencing data were analyzed using an internally developed bioinformatics pipeline to detect genomic alterations associated with the presence of cancer. RESULTS: In an unselected cohort of 359 cancer-diagnosed dogs, 4% of cases were detected during a wellness visit, 8% were detected incidentally, and 88% were detected after the owner reported clinical signs suggestive of cancer. Liquid biopsy detected disease in 54.7% (95% confidence interval [CI], 49.5%-59.8%) of patients, including 32% of dogs with early-stage cancer, 48% of preclinical dogs, and 84% of dogs with advanced-stage disease. CONCLUSIONS/CLINICAL IMPORTANCE: Most cases of cancer were diagnosed after the onset of clinical signs; only 4% of dogs had cancer detected using the current standard of care (i.e., wellness visit). Liquid biopsy has the potential to increase detection of cancer when added to a dog's wellness visit.
Assuntos
Doenças do Cão , Neoplasias , Cães , Animais , Estudos Retrospectivos , Biópsia Líquida/veterinária , Biópsia Líquida/métodos , Neoplasias/diagnóstico , Neoplasias/veterinária , Doenças do Cão/diagnósticoRESUMO
OBJECTIVE: To review ordering patterns, positivity rates, and outcome data for a subset of consecutive samples submitted for a commercially available, blood-based multicancer early-detection liquid biopsy test for dogs using next-generation sequencing at 1 laboratory. SAMPLE: 1,500 consecutively submitted blood samples from client-owned dogs with and without clinical suspicion and/or history of cancer for prospective liquid biopsy testing between December 28, 2021, and June 28, 2022. PROCEDURES: We performed a retrospective observational study, reviewing data from 1,500 consecutive clinical samples submitted for liquid biopsy testing. Outcome data were obtained via medical record review, direct communication with the referring clinic, and/or a patient outcome survey through October 16, 2022. RESULTS: Sixty-four percent (910/1,419) of reportable samples were submitted for cancer screening, 26% (366/1,419) for aid in diagnosis, and 10% (143/1,419) for other indications. The positivity rate was 25.4% (93/366) in aid-in-diagnosis patients and 4.5% (41/910) in screening patients. Outcome data were available for 33% (465/1,401) of patients, and outcomes were classifiable for 428 patients. The relative observed sensitivity was 61.5% (67/109) and specificity was 97.5% (311/319). The positive predictive value was 75.0% (21/28) for screening patients and 97.7% (43/44) for aid-in-diagnosis patients, and the time to diagnostic resolution following a positive result was < 2 weeks in most cases. CLINICAL RELEVANCE: Liquid biopsy using next-generation sequencing represents a novel tool for noninvasive detection of cancer in dogs. Real-world clinical performance meets or exceeds expectations established in the test's clinical validation study.
Assuntos
Doenças do Cão , Neoplasias , Cães , Animais , Estudos Prospectivos , Biópsia Líquida/veterinária , Valor Preditivo dos Testes , Neoplasias/veterinária , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Estudos Observacionais Veterinários como AssuntoRESUMO
Aquaporin (AQP) 4 is the predominant water channel in the mammalian brain, abundantly expressed in the blood-brain and brain-cerebrospinal fluid interfaces of glial cells. Its function in cerebral water balance has implications in neuropathological disorders, including brain edema, stroke, and head injuries. The 1.8-A crystal structure reveals the molecular basis for the water selectivity of the channel. Unlike the case in the structures of water-selective AQPs AqpZ and AQP1, the asparagines of the 2 Asn-Pro-Ala motifs do not hydrogen bond to the same water molecule; instead, they bond to 2 different water molecules in the center of the channel. Molecular dynamics simulations were performed to ask how this observation bears on the proposed mechanisms for how AQPs remain totally insulating to any proton conductance while maintaining a single file of hydrogen bonded water molecules throughout the channel.
Assuntos
Aquaporina 4/química , Água/metabolismo , Aquaporina 4/metabolismo , Adesão Celular , Cristalografia por Raios X , Humanos , Conformação Proteica , Dobramento de ProteínaRESUMO
This proof-of-concept study demonstrates that blood-based liquid biopsy using next generation sequencing of cell-free DNA can non-invasively detect multiple classes of genomic alterations in dogs with cancer, including alterations that originate from spatially separated tumor sites. Eleven dogs with a variety of confirmed cancer diagnoses (including localized and disseminated disease) who were scheduled for surgical resection, and five presumably cancer-free dogs, were enrolled. Blood was collected from each subject, and multiple spatially separated tumor tissue samples were collected during surgery from 9 of the cancer subjects. All samples were analyzed using an advanced prototype of a novel liquid biopsy test designed to non-invasively interrogate multiple classes of genomic alterations for the detection, characterization, and management of cancer in dogs. In five of the nine cancer patients with matched tumor and plasma samples, pre-surgical liquid biopsy testing identified genomic alterations, including single nucleotide variants and copy number variants, that matched alterations independently detected in corresponding tumor tissue samples. Importantly, the pre-surgical liquid biopsy test detected alterations observed in spatially separated tissue samples from the same subject, demonstrating the potential of blood-based testing for comprehensive genomic profiling of heterogeneous tumors. Among the three patients with post-surgical blood samples, genomic alterations remained detectable in one patient with incomplete tumor resection, suggesting utility for non-invasive detection of minimal residual disease following curative-intent treatment. Liquid biopsy allows for non-invasive profiling of cancer-associated genomic alterations with a simple blood draw and has potential to overcome the limitations of tissue-based testing posed by tissue-level genomic heterogeneity.
RESUMO
Cancer is the leading cause of death in dogs, in part because many cases are identified at an advanced stage when clinical signs have developed, and prognosis is poor. Increased understanding of cancer as a disease of the genome has led to the introduction of liquid biopsy testing, allowing for detection of genomic alterations in cell-free DNA fragments in blood to facilitate earlier detection, characterization, and management of cancer through non-invasive means. Recent discoveries in the areas of genomics and oncology have provided a deeper understanding of the molecular origins and evolution of cancer, and of the "one health" similarities between humans and dogs that underlie the field of comparative oncology. These discoveries, combined with technological advances in DNA profiling, are shifting the paradigm for cancer diagnosis toward earlier detection with the goal of improving outcomes. Liquid biopsy testing has already revolutionized the way cancer is managed in human medicine - and it is poised to make a similar impact in veterinary medicine. Multiple clinical use cases for liquid biopsy are emerging, including screening, aid in diagnosis, targeted treatment selection, treatment response monitoring, minimal residual disease detection, and recurrence monitoring. This review article highlights key scientific advances in genomics and their relevance for veterinary oncology, with the goal of providing a foundational introduction to this important topic for veterinarians. As these technologies migrate from human medicine into veterinary medicine, improved awareness and understanding will facilitate their rapid adoption, for the benefit of veterinary patients.
RESUMO
We report the discovery of new, low micromolar, small molecule inhibitors of human platelet-type 12- and reticulocyte 15-lipoxygenase-1 (12-hLO and 15-hLO) using structure-based methods. Specifically, we created homology models of 12-hLO and 15-hLO, based on the structure of rabbit 15-lipoxygenase, for in silico screening of a large compound library followed by in vitro screening of 20 top scoring molecules. Eight of these compounds inhibited either 12- or 15-human lipoxygenase with lower than 100 microM affinity. Of these, we obtained IC50 values for the three best inhibitors, all of which displayed low micromolar inhibition. One compound showed specificity for 15-hLO versus 12-hLO; however, a selective inhibitor for 12-hLO was not identified. As a control we screened 20 randomly selected compounds, of which none showed low micromolar inhibition. The new low-micromolar inhibitors appear to be suitable as leads for further inhibitor development efforts against 12-hLO and 15-hLO, based on the fact their size and chemical properties are appropriate to classify them as drug-like compounds. The models of these protein-inhibitor complexes suggest strategies for future development of selective lipoxygenase inhibitors.
Assuntos
Inibidores de Lipoxigenase , Inibidores de Lipoxigenase/síntese química , Modelos Moleculares , Animais , Araquidonato 12-Lipoxigenase/química , Araquidonato 15-Lipoxigenase/química , Sítios de Ligação , Bases de Dados Factuais , Humanos , Inibidores de Lipoxigenase/química , Coelhos , Relação Estrutura-AtividadeRESUMO
We examine using molecular dynamics simulations the rate and mechanism of water molecules exchange around the Li(+) and Na(+) ions during ion transfer across the interface between water and nitrobenzene. As the ions are transferred from the water to the organic phase, they keep their first hydration shell and an incomplete second shell. The rate of water exchange between the first shell and the rest of the interfacial water molecule decreases during the transfer, which is consistent with an increase in the barrier along the ion-water potential of mean force. While in bulk water the exchange of water molecules around the Li(+) follows an associative (A) or associative interchange (I(a)) type mechanism, the fraction of exchange events of type A increases at the interface. In contrast, while in bulk water the exchange of water molecules around the six coordinated Na(+) hydrated species mainly follows a dissociative mechanism, the situation at the interface involves an equilibrium interchange between the four- and five-coordinated hydrated ion. Simulation of the reversed process, in which the hydrated Li(+) ion is transferred to the aqueous phase, shows the same general behavior as a function of location from the interface.
Assuntos
Íons/química , Lítio , Sódio , Água/química , Cátions Monovalentes , Simulação por Computador , Eletroquímica/métodos , Cinética , Nitrobenzenos/químicaRESUMO
In water, positive ions attract negative ions. That attraction can be modulated if a hydrophobic surface is present near the two ions in water. Using computer simulations with explicit and implicit water, we study how an ion embedded on a hydrophobic surface interacts with another nearby ion in water. Using hydrophobic surfaces with different curvatures, we find that the contact interaction between a positive and negative ion is strongly affected by the curvature of an adjacent surface, either stabilizing or destabilizing the ion pair. We also find that the solvent-separated ion pair (SSIP) can be made more stable than the contacting ion pair by the presence of a surface. This may account for why bridging waters are often found in protein crystal structures. We also note that implicit solvent models do not account for SSIPs. Finally, we find that there are charge asymmetries: an embedded positive charge attracting a negative ion is different than an embedded negative charge attracting a positive ion. Such asymmetries are also not predicted by implicit solvent models. These results may be useful for improving computational models of solvation in biology and chemistry.
Assuntos
Íons/química , Proteínas/química , Simulação por Computador , Interações Hidrofóbicas e Hidrofílicas , Solventes/química , Propriedades de Superfície , Água/químicaRESUMO
We report the draft genome sequences of Klebsiella pneumoniae strains from four patients at a northern California health care facility. All strains contained the New Delhi metallo-ß-lactamase (NDM1) carbapenemase with extended antibiotic resistance, including resistance to expanded-spectrum cephalosporins, imipenem, ertapenem, and meropenem. NDM gene alignments revealed that the resistance was plasmid encoded.
RESUMO
The solution dynamics of antibodies are critical to antibody function. We explore the internal solution dynamics of antibody molecules through the combination of time-resolved fluorescence anisotropy experiments on IgG1 with more than two microseconds of all-atom molecular dynamics (MD) simulations in explicit water, an order of magnitude more than in previous simulations. We analyze the correlated motions with a mutual information entropy quantity, and examine state transition rates in a Markov-state model, to give coarse-grained descriptors of the motions. Our MD simulations show that while there are many strongly correlated motions, antibodies are highly flexible, with F(ab) and F(c) domains constantly forming and breaking contacts, both polar and non-polar. We find that salt bridges break and reform, and not always with the same partners. While the MD simulations in explicit water give the right time scales for the motions, the simulated motions are about 3-fold faster than the experiments. Overall, the picture that emerges is that antibodies do not simply fluctuate around a single state of atomic contacts. Rather, in these large molecules, different atoms come in contact during different motions.
Assuntos
Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais/química , Imunoglobulina G/química , Simulação de Dinâmica Molecular , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Polarização de Fluorescência , Humanos , Imunoglobulina G/uso terapêutico , Cadeias de Markov , Camundongos , Modelos Moleculares , Conformação Proteica , TrastuzumabRESUMO
To test the accuracy of existing AMBER force field models in predicting peptoid conformation and dynamics, we simulated a set of model peptoid molecules recently examined by Butterfoss et al. (JACS 2009, 131, 16798-16807) using QM methods as well as three peptoid sequences with experimentally determined structures. We found that AMBER force fields, when used with a Generalized Born/Surface Area (GBSA) implicit solvation model, could accurately reproduce the peptoid torsional landscape as well as the major conformers of known peptoid structures. Enhanced sampling by replica exchange molecular dynamics (REMD) using temperatures from 300 to 800 K was used to sample over cis-trans isomerization barriers. Compared to (Nrch)5 and cyclo-octasarcosyl, the free energy of N-(2-nitro-3-hydroxyl phenyl)glycine-N-(phenyl)glycine has the most "foldable" free energy landscape, due to deep trans-amide minima dictated by N-aryl sidechains. For peptoids with (S)-N (1-phenylethyl) (Nspe) side chains, we observe a discrepancy in backbone dihedral propensities between molecular simulations and QM calculations, which may be due to force field effects or the inability to capture n --> n* interactions. For these residues, an empirical phi-angle biasing potential can "rescue" the backbone propensities seen in QM. This approach can serve as a general strategy for addressing force fields without resorting to a complete reparameterization. Overall, this study demonstrates the utility of implicit-solvent REMD simulations for efficient sampling to predict peptoid conformational landscapes, providing a potential tool for first-principles design of sequences with specific folding properties.
Assuntos
Simulação de Dinâmica Molecular , Peptoides/química , Cristalografia por Raios X , Ciclização , Estrutura Molecular , Sarcosina/química , Solventes/química , TermodinâmicaRESUMO
Post-translational phosphorylation plays a key role in regulating protein function. Here, we provide a quantitative assessment of the relative strengths of hydrogen bonds involving phosphorylated amino acid side chains (pSer, pAsp) with several common donors (Arg, Lys, and backbone amide groups). We utilize multiple levels of theory, consisting of explicit solvent molecular dynamics, implicit solvent molecular mechanics, and quantum mechanics with a self-consistent reaction field treatment of solvent. Because the approximately 6 pKa of phosphate suggests that -1 and -2 charged species may coexist at physiological pH, hydrogen bonds involving both protonated and deprotonated phosphates for all donor-acceptor pairs are considered. Multiple bonding geometries for the charged-charged interactions are also considered. Arg is shown to be capable of substantially stronger salt bridges with phosphorylated side chains than Lys. A pSer hydrogen-bond acceptor tends to form more stable interactions than a pAsp acceptor. The effect of phosphate protonation state on the strengths of the hydrogen bonds is remarkably subtle, with a more pronounced effect on pAsp than on pSer.
Assuntos
Aminoácidos/química , Simulação por Computador , Processamento de Proteína Pós-Traducional , Amidas/química , Ácido Aspártico/química , Ácido Glutâmico/química , Ligação de Hidrogênio , Fosforilação , Serina/química , Cloreto de Sódio/químicaRESUMO
There is much debate whether the fatty acid substrate of lipoxygenase binds "carboxylate-end first" or "methyl-end first" in the active site of soybean lipoxygenase-1 (sLO-1). To address this issue, we investigated the sLO-1 mutants Trp500Leu, Trp500Phe, Lys260Leu, and Arg707Leu with steady-state and stopped-flow kinetics. Our data indicate that the substrates (linoleic acid (LA), arachidonic acid (AA)), and the products (13-(S)-hydroperoxy-9,11-(Z,E)-octadecadienoic acid (HPOD) and 15-(S)-hydroperoxyeicosatetraeonic acid (15-(S)-HPETE)) interact with the aromatic residue Trp500 (possibly pi-pi interaction) and with the positively charged amino acid residue Arg707 (charge-charge interaction). Residue Lys260 of soybean lipoxygenase-1 had little effect on either the activation or steady-state kinetics, indicating that both the substrates and products bind "carboxylate-end first" with sLO-1 and not "methyl-end first" as has been proposed for human 15-lipoxygenase.