Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(4)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32054014

RESUMO

In this study, the potentiometric arrayed glucose biosensors, which were based on zinc oxide (ZnO) or aluminum-doped zinc oxide (AZO) sensing membranes, were fabricated by using screen-printing technology and a sputtering system, and graphene oxide (GO) and Nafion-glucose oxidase (GOx) were used to modify sensing membranes by using the drop-coating method. Next, the material properties were characterized by using a Raman spectrometer, a field-emission scanning electron microscope (FE-SEM), and a scanning probe microscope (SPM). The sensing characteristics of the glucose biosensors were measured by using the voltage-time (V-T) measurement system. Finally, electrochemical impedance spectroscopy (EIS) was conducted to analyze their charge transfer abilities. The results indicated that the average sensitivity of the glucose biosensor based on Nafion-GOx/GO/AZO was apparently higher than that of the glucose biosensor based on Nafion-GOx/GO/ZnO. In addition, the glucose biosensor based on Nafion-GOx/GO/AZO exhibited an excellent average sensitivity of 15.44 mV/mM and linearity of 0.997 over a narrow range of glucose concentration range, a response time of 26 s, a limit of detection (LOD) of 1.89 mM, and good reproducibility. In terms of the reversibility and stability, the hysteresis voltages (VH) were 3.96 mV and 2.42 mV. Additionally, the glucose biosensor also showed good anti-inference ability and reproducibility. According to these results, it is demonstrated that AZO is a promising material, which could be used to develop a reliable, simple, and low-cost potentiometric glucose biosensor.


Assuntos
Técnicas Biossensoriais/métodos , Polímeros de Fluorcarboneto/química , Glucose Oxidase/metabolismo , Glucose/análise , Grafite/química , Óxido de Zinco/química , Alumínio/química , Espectroscopia Dielétrica , Eletrodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Glucose Oxidase/química , Humanos , Limite de Detecção , Potenciometria , Reprodutibilidade dos Testes
2.
Sensors (Basel) ; 19(13)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288406

RESUMO

Two types of urea biosensors were integrated with a wireless measurement system and microfluidic measurement system. The two biosensors used were (i) a magnetic beads (MBs)-urease/graphene oxide (GO)/titanium dioxide (TiO2)-based biosensor and (ii) an MBs-urease/GO/ nickel oxide (NiO)-based biosensor, respectively. The wireless measurement system work exhibited the feasibility for the remote detection of urea, but it will require refinement and modification to improve stability and precision. The microchannel fluidic system showed the measurement reliability. The sensing properties of urea biosensors at different flow rates were investigated. From the measurement results, the decay of average sensitivity may be attributed to the induced vortex-induced vibrations (VIV) at the high flow rate. In the aspect of wireless monitoring, the average sensitivity of the urea biosensor based on MBs-urease/GO/NiO was 4.780 mV/(mg/dl) and with the linearity of 0.938. In the aspect of measurement under dynamic conditions, the average sensitivity of the urea biosensor based on MBs-urease/GO/NiO were 5.582 mV/(mg/dl) and with the linearity of 0.959. Both measurements performed NiO was better than TiO2 according to the comparisons.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Microfluídica/instrumentação , Ureia/análise , Tecnologia sem Fio/instrumentação , Desenho de Equipamento , Grafite/química , Níquel/química , Sensibilidade e Especificidade , Titânio/química , Urease/química
3.
Sensors (Basel) ; 18(2)2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29461506

RESUMO

We investigate the temperature effect on sensing characteristics and drift effect of an arrayed flexible ruthenium dioxide (RuO2)/graphene oxide (GO) chloride sensor at different solution temperatures between 10 °C and 50 °C. The average sensor sensitivities according to our experimental results were 28.2 ± 1.4 mV/pCl (10 °C), 42.5 ± 2.0 mV/pCl (20 °C), 47.1 ± 1.8 mV/pCl (30 °C), 54.1 ± 2.01 mV/pCl (40 °C) and 46.6 ± 2.1 mV/pCl (50 °C). We found the drift effects of an arrayed flexible RuO2/GO chloride sensor in a 1 M NaCl solution to be between 8.2 mV/h and 2.5 mV/h with solution temperatures from 10 °C to 50 °C.

4.
Sensors (Basel) ; 17(7)2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28704960

RESUMO

We proposed the flexible arrayed lactate biosensor based on immobilizing l-lactate dehydrogenase (LDH) and nicotinamide adenine dinucleotide ( NAD + ) on nickel oxide (NiO) film, and which the average sensitivity could be enhanced by using graphene oxide (GO) and magnetic beads (MBs). By using GO and MBs, it exhibits excellent sensitivity (45.397 mV/mM) with a linearity of 0.992 in a range of 0.2 mM to 3 mM. According to the results of electrochemical impedance spectroscopy (EIS), the electron transfer resistance of LDH- NAD + -MBs/GPTS/GO/NiO film was smaller than those of LDH-NAD⁺/GPTS/GO/NiO film and LDH- NAD + /GPTS/NiO film, and it presented the outstanding electron transfer ability. After that, the limit of detection, anti-interference effect and bending test were also investigated.


Assuntos
Técnicas Biossensoriais , Grafite , L-Lactato Desidrogenase , Ácido Láctico , NAD
5.
Sensors (Basel) ; 13(12): 17281-91, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24351636

RESUMO

Fault diagnosis (FD) and data fusion (DF) technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagnosis to remove any faulty sensors in advance, and then proceed with data fusion in the sensor array. The average, self-adaptive and coefficient of variance data fusion methods are used in this study. The pH electrode is fabricated with ruthenium dioxide (RuO2) sensing membrane using a sputtering system to deposit it onto a silicon substrate, and eight RuO2 pH electrodes are fabricated to form a sensor array for this study.

6.
J Nanosci Nanotechnol ; 12(7): 5423-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22966583

RESUMO

A novel, simple and low-temperature ultrasonic spray method was developed to fabricate the multi-walled carbon-nanotubes (MWCNTs) based extended-gate field-effect transistors (EGFETs) as the pH sensor. With an acid-treated process, the chemically functionalized two-dimensional MWCNT network could provide plenty of functional groups which exhibit hydrophilic property and serve as hydrogen sensing sites. For the first time, the EGFET using a MWCNT structure could achieve a wide sensing rage from pH = 1 to pH = 13. Furthermore, the pH sensitivity and linearity values of the CNT pH-EGFET devices were enhanced to 51.74 mV/pH and 0.9948 from pH = 1 to pH = 13 while the sprayed deposition reached 50 times. The sensing properties of hydrogen and hydroxyl ions show significantly dependent on the sprayed deposition times, morphologies, crystalline and chemical bonding of acid-treated MWCNT. These results demonstrate that the MWCNT-EGFETs are very promising for the applications in the pH and biomedical sensors.

7.
Nanomaterials (Basel) ; 11(4)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920137

RESUMO

Polyhedral oligomeric silsesquioxane (POSS), featuring a hollow-cage or semi-cage structure is a new type of organic-inorganic hybrid nanoparticles. POSS combines the advantages of inorganic components and organic components with a great potential for optoelectronic applications such as in emerging perovskite solar cells. When POSS is well dispersed in the polymer matrix, it can effectively improve the thermal, mechanical, magnetic, acoustic, and surface properties of the polymer. In this study, POSS was spin-coated as an ultra-thin passivation layer over the hole transporting layer of nickel-oxide (NOx) in the structure of a perovskite solar cell. The POSS incorporation led to a more hydrophobic and smoother surface for further perovskite deposition, resulting in the increase in the grain size of perovskite. An appropriate POSS passivation layer could effectively reduce the recombination of the electron and hole at grain boundaries and increase the short-circuit current from 18.0 to 20.5 mA·cm-2. Moreover, the open-circuit voltage of the cell could slightly increase over 1 V.

8.
Polymers (Basel) ; 13(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201835

RESUMO

Potentiometric biosensors based on flexible arrayed silver paste electrode and copper-doped zinc oxide sensing film modified by iron-platinum nanoparticles (FePt NPs) are designed and manufactured to detect lactate in human. The sensing film is made of copper-doped zinc oxide (CZO) by a radio frequency (RF) sputtering system, and then modified by iron-platinum nanoparticles (FePt NPs). The surface morphology of copper-doped zinc oxide (CZO) is analyzed by scanning electron microscope (SEM). FePt NPs are analyzed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The average sensitivity, response time, and interference effect of the lactate biosensors are analyzed by voltage-time (V-T) measurement system. The electrochemical impedance is analyzed by electrochemical impedance spectroscopy (EIS). The average sensitivity and linearity over the concentration range 0.2-5 mM are 25.32 mV/mM and 0.977 mV/mM, respectively. The response time of the lactate biosensor is 16 s, with excellent selectivity.

9.
Sensors (Basel) ; 9(4): 2478-90, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22574026

RESUMO

The pH sensing and nonideal characteristics of a ruthenium nitride (RuN) sensing membrane pH sensor were investigated. RuN thin films were deposited from a 99.9% ruthenium target on p-type silicon substrates using radio frequency (r.f.) sputtering with N(2) gas. Subsequently, the nanometric structure and surface morphology of RuN thin films were determined. The sensitivity of the RuN sensing membrane pH sensor was 58.03 mV/pH, obtained from I(D)-V(G) curves with a current-voltage (I-V) measurement system in standard buffer solutions from pH 1 to pH 13 at room temperature (25 °C). Moreover, the nonideal characteristics of the RuN sensing membrane, such as temperature coefficient, drift with light influence, drift rate and hysteresis width, etc. were also investigated. Finally, the sensing characteristics of the RuN membrane were compared with titanium nitride (TiN), aluminum nitride (AlN) and silicon nitride (Si(3)N(4)) membranes.

10.
Sensors (Basel) ; 8(9): 5386-5396, 2008 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-27873820

RESUMO

The drug sensing properties of procaine and berberine drug sensors based on ruthenium dioxide thin film were investigated. Ruthenium dioxide (RuO2) membrane prepared using a sputtering method was used as substrates for the drug sensors. The procaine and berberine drug sensors were prepared using a drug-sensitive membrane that measured the procaine and berberine concentration in a linear range from 1×10-2 M to 1×10-6 M and from 1×10-2 M to 1×10-7 M, respectively. The drift rates and hyteresis widths of these ruthenium dioxide based drug sensors were also investigated.

11.
Polymers (Basel) ; 9(7)2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-30970949

RESUMO

In this study, poly(3,3-dibenzyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine)/platinum composite films (PProDOT-Bz2/Pt) were used as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). The composite films were prepared on fluorine-doped tin oxide (FTO) glass by radio frequency (RF) sputtering to deposit platinum (Pt) for 30 s. Afterwards, PProDOT-Bz2 was deposited on the Pt⁻FTO glass via electrochemical polymerization. The electron transfer process of DSSCs was investigated using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The DSSCs with 0.05 C/cm² PProDOT-Bz2-Pt composite films showed an open circuit voltage (Voc) of 0.70 V, a short-circuit current density (Jsc) of 7.27 mA/cm², and a fill factor (F.F.) of 68.74%. This corresponded to a photovoltaic conversion efficiency (η) of 3.50% under a light intensity of 100 mW/cm².

12.
IEEE Trans Biomed Eng ; 53(7): 1401-8, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16830944

RESUMO

In this paper, uricase, catalase, and electron mediator were coimmobilized on the surface of the tin oxide (SnO2)/indium tin oxide (ITO) glass, to develop a disposable potentiometric uric acid biosensor. The SnO2/ITO glass was employed as a pH sensor, fabricated by sputtering SnO2 thin films on the ITO glass. 3-Glycidyloxypropyltrimethoxysilane (GPTS) was utilized to immobilize uricase, catalase and the electron mediator (ferrocenecarboxylic acid, FcA) on the sensing window. The experimental results reveal that the optimal weight ratio of uricase, FcA to catalase (CAT) is 4:1:2. The sensor responds linearly between 2 mg/dl and 7 mg/dl at pH 7.5, in 20 mM of test solution, with a correlation coefficient of 0.99213. Accordingly, no significant interference was observed when interfering substances, glucose, urea and ascorbic acid, were added to the uric acid solution. Moreover, the recorded voltage was relatively constant during the first 28 days of measurement. Consequently, a potentiometric uric acid biosensor was realized with the advantages of low cost and simple fabrication.


Assuntos
Técnicas Biossensoriais/instrumentação , Eletroquímica/instrumentação , Urato Oxidase/química , Ácido Úrico/urina , Urinálise/instrumentação , Técnicas Biossensoriais/métodos , Eletroquímica/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Concentração de Íons de Hidrogênio , Microeletrodos , Projetos Piloto , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Urato Oxidase/análise , Urinálise/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA