Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Environ Sci Technol ; 57(13): 5296-5304, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36951544

RESUMO

Agricultural soils are a major reservoir of microplastics, and concerns have arisen about the impacts of microplastics on soil properties and functioning. Here, we measured the physical properties of a silt loam in response to the incorporation of polyester fibers and polypropylene granules over a wide range of concentrations. We further elucidated the underlying mechanisms by determining the role of microplastic shape and the baseline effects from the amendment of soil particles. The incorporation of microplastics into soil tended to increase contact angle and saturated hydraulic conductivity and decrease bulk density and water holding capacity, but not affect aggregate stability. Polyester fibers affected soil physical properties more profoundly than polypropylene granules, due to the vastly different shape of fibers from that of soil particles. However, changes in soil properties were gradual, and significant changes did not occur until a high concentration of microplastics was reached (i.e., 0.5% w/w for polyester fibers and 2% w/w for polypropylene granules). Currently, microplastic concentrations in soils not heavily polluted with plastics are far below these concentrations, and results from this study suggest that microplastics at environmentally relevant concentrations have no significant effects on soil physical properties.


Assuntos
Microplásticos , Solo , Plásticos , Polipropilenos , Poliésteres
2.
Environ Sci Technol ; 53(5): 2612-2617, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30672699

RESUMO

A simple and rapid process of ReO4- (as a surrogate of TcO4-) removal from aqueous solutions based on the electrically switched ion exchange (ESIX) method has been demonstrated in this work. Activated carbon-Polypyrrole (AC-PPy) was synthesized from activated carbon and pyrrole by electrodeposition method which was served as an electrically switched ion exchanger for ReO4- removal. The characterization results show that the AC-PPy composite exhibited an excellent loading capacity and a high stability for ions uptake and release. Chronoamperometric studies show that the ESIX treatment could be completed within 60 s, demonstrating the rapid uptake and release of ions. Uptake and release of ReO4- was verified by electrochemical quartz crystal microbalance with dissipation shift (EQCMD) studies. By modulating the electrochemical potential of the AC-PPy, the uptake and release of ReO4- ions can be controlled. Similar trends of uptake and release of ReO4- were observed in cyclic voltammetry (-0.4 to 0.8 V) for five cycles with the EQCMD. X-ray photoelectron spectroscopy (XPS) confirmed the process of ReO4- removal in the AC-PPy composite. Conclusively, the smart material shows excellent efficiency and selectivity for the removal of ReO4- from aqueous solutions.


Assuntos
Polímeros , Pirróis , Carbono , Troca Iônica , Água
3.
Environ Sci Technol ; 49(18): 10886-93, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26280799

RESUMO

The aggregation and stability of graphene oxide (GO) and three successively reduced GO (rGO) nanomaterials were investigated. Reduced GO species were partially reduced GO (rGO-1h), intermediately reduced GO (rGO-2h), and fully reduced GO (rGO-5h). Specifically, influence of pH, ionic strength, ion valence, and presence of natural organic matter (NOM) were studied. Results show that stability of GO in water decreases with successive reduction of functional groups, with pH having the greatest influence on rGO stability. Stability is also dependent on ion valence and the concentration of surface functional groups. While pH did not noticeably affect stability of GO in the presence of 10 mM NaCl, adding 0.1 mM CaCl2 reduced stability of GO with increased pH. This is due to adsorption of Ca(2+) ions on the surface functional groups of GO which reduces the surface charge of GO. As the concentration of rGO functional groups decreased, so did the influence of Ca(2+) ions on rGO stability. Critical coagulation concentrations (CCC) of GO, rGO-1h, and rGO-2h were determined to be ∼ 200 mM, 35 mM, and 30 mM NaCl, respectively. In the presence of CaCl2, CCC values of GO and rGO are quite similar, however. Long-term studies show that a significant amount of rGO-1h and rGO-2h remain stable in Call's Creek surface water, while effluent wastewater readily destabilizes rGO. In the presence NOM and divalent cations (Ca(2+), Mg(2+)), GO aggregates settle from suspension due to GO functional group bridging with NOM and divalent ions. However, rGO-1h and rGO-2h remain suspended due to their lower functional group concentration and resultant reduced NOM-divalent cation bridging. Overall, pH, divalent cations, and NOM can play complex roles in the fate of rGO and GO.


Assuntos
Grafite/química , Nanoestruturas/química , Adsorção , Cátions Bivalentes/química , Concentração de Íons de Hidrogênio , Concentração Osmolar , Oxirredução , Óxidos/química , Cloreto de Sódio , Água , Poluentes Químicos da Água
4.
Environ Sci Technol ; 49(6): 3435-43, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25671674

RESUMO

Graphene oxide (GO) is promising in scalable production and has useful properties that include semiconducting behavior, catalytic reactivity, and aqueous dispersibility. In this study, we investigated the photochemical fate of GO under environmentally relevant sunlight conditions. The results indicate that GO readily photoreacts under simulated sunlight with the potential involvement of electron-hole pair creation. GO was shown to photodisproportionate to CO2, reduced materials similar to reduced GO (rGO) that are fragmented compared to the starting material, and low molecular-weight (LMW) species. Kinetic studies show that the rate of the initially rapid photoreaction of GO is insensitive to the dissolved oxygen content. In contrast, at longer time points (>10 h), the presence of dissolved oxygen led to a greater production of CO2 than the same GO material under N2-saturated conditions. Regardless, the rGO species themselves persist after extended irradiation equivalent to 2 months in natural sunlight, even in the presence of dissolved oxygen. Overall, our findings indicate that GO phototransforms rapidly under sunlight exposure, resulting in chemically reduced and persistent photoproducts that are likely to exhibit transport and toxic properties unique from parent GO.


Assuntos
Grafite/química , Óxidos/química , Luz Solar , Dióxido de Carbono/química , Cinética , Fotoquímica , Água/química
5.
Environ Sci Technol ; 48(16): 9382-90, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25026416

RESUMO

Interactions of graphene oxide (GO) nanomaterials with natural organic matter (NOM) and metal oxide surfaces were investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Three different types of NOM were studied: Suwannee River humic and fulvic acids (SRHA and SRFA) and alginate. Aluminum oxide surface was used as a model metal oxide surface. Deposition trends show that GO has the highest attachment on alginate, followed by SRFA, SRHA, and aluminum oxide surfaces, and that GO displayed higher interactions with all investigated surfaces than with silica. Deposition and release behavior of GO on aluminum oxide surface is very similar to positively charged poly-L-lysine-coated surface. Higher interactions of GO with NOM-coated surfaces are attributed to the hydroxyl, epoxy, and carboxyl functional groups of GO; higher deposition on alginate-coated surfaces is attributed to the rougher surface created by the extended conformation of the larger alginate macromolecules. Both ionic strength (IS) and ion valence (Na(+) vs Ca(2+)) had notable impact on interactions of GO with different environmental surfaces. Due to charge screening, increased IS resulted in greater deposition for NOM-coated surfaces. Release behavior of deposited GO varied significantly between different environmental surfaces. All surfaces showed significant release of deposited GO upon introduction of low IS water, indicating that deposition of GO on these surfaces is reversible. Release of GO from NOM-coated surfaces decreased with IS due to charge screening. Release rates of deposited GO from alginate-coated surface were significantly lower than from SRHA and SRFA-coated surfaces due to trapping of GO within the rough surface of the alginate layer.


Assuntos
Alginatos/química , Óxido de Alumínio/química , Benzopiranos/química , Grafite/química , Substâncias Húmicas/análise , Nanoestruturas/química , Poluentes Químicos da Água/química , Grafite/toxicidade , Modelos Químicos , Nanoestruturas/toxicidade , Concentração Osmolar , Técnicas de Microbalança de Cristal de Quartzo , Rios/química , Dióxido de Silício/química , Propriedades de Superfície , Poluentes Químicos da Água/toxicidade
6.
Environ Sci Technol ; 48(2): 961-9, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24345218

RESUMO

Interactions of graphene oxide (GO) with silica surfaces were investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Both GO deposition and release were monitored on silica- and poly-l-lysine (PLL) coated surfaces as a function of GO concentration and in NaCl, CaCl2, and MgCl2 as a function of ionic strength (IS). Under favorable conditions (PLL-coated positive surface), GO deposition rates increased with GO concentration, as expected from colloidal theory. Increased NaCl concentration resulted in a greater deposition attachment efficiency of GO on the silica surface, indicating that deposition of GO follows Derjaguin-Landau-Verwey-Overbeek (DLVO) theory; GO deposition rates decreased at high IS, however, due to large aggregate formation. GO critical deposition concentration (CDC) on the silica surface is determined to be 40 mM NaCl which is higher than the reported CDC values of fullerenes and lower than carbon nanotubes. A similar trend is observed for MgCl2 which has a CDC value of 1.2 mM MgCl2. Only a minimal amount of GO (frequency shift <2 Hz) was deposited on the silica surface in CaCl2 due to the bridging ability of Ca(2+) ions with GO functional groups. Significant GO release from silica surface was observed after adding deionized water, indicating that GO deposition is reversible. The release rates of GO were at least 10-fold higher than the deposition rates under similar conditions indicating potential high release and mobility of GO in the environment. Under favorable conditions, a significant amount of GO was released which indicates potential multilayer GO deposition. However, a negligible amount of deposited GO was released in CaCl2 under favorable conditions due to the binding of GO layers with Ca(2+) ions. Release of GO was significantly dependent on salt type with an overall trend of NaCl > MgCl2 > CaCl2.


Assuntos
Grafite/química , Nanoestruturas/química , Técnicas de Microbalança de Cristal de Quartzo , Íons , Concentração Osmolar , Polilisina/química , Dióxido de Silício/química , Cloreto de Sódio/química , Propriedades de Superfície
7.
Sci Total Environ ; 912: 168883, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38040367

RESUMO

Land-applied biosolids can be a considerable source of microplastics in soils. Previous studies reported microplastics accumulation in soils from biosolid application, however, little is known about the contribution of atmospherically deposited microplastics to agricultural soils. In this study, we quantified and characterized microplastics in soils that have been amended with biosolids over the past 23 years. We also collected atmospheric deposition samples to determine the amount and type of plastics added to soils through atmospheric input over a period of about 2 years. Soil samples were taken from a replicated field trial where biosolids have been applied at rates of 0, 4.8, 6.9, and 9.0 t/ha every second crop. The biosolids were anaerobically digested and dewatered, and were applied by spreading onto the soil surface. Soil and atmospheric samples were extracted for microplastics by Fenton's reaction to remove organic matter followed by flotation in a zinc chloride solution to separate plastic from soil particles. Samples were analyzed for microplastics by optical microscopy and Laser Direct Infrared Imaging Analysis (LDIR). The mean number of microplastics identified from biosolids samples was 12,000 particles/kg dry biosolids. The long-term applications of biosolids to the soil led to mean plastics concentrations of 383, 500, and 361 particles/kg dry soil in the 0-10 cm depth for low, medium, and high biosolids application rates, respectively. These plastic concentrations were not significantly different from each other, but significantly higher than those found in non biosolids-amended soil (117 particles/kg dry soil). The dominant plastic types by number found in biosolids were polyurethane, followed by polyethylene, and polyamide. The most abundant plastics in soil samples were polyurethane, polyethylene terephthalate, polyamide, and polyethylene. Atmospheric deposition contributed to 15 particles/kg dry soil per year and was mainly composed of polyamide fibers. This study shows that long-term application of biosolids led to an accumulation of microplastics in soil, but that atmospheric deposition also contributes a considerable input of microplastics.


Assuntos
Poluentes do Solo , Solo , Microplásticos , Plásticos , Biossólidos , Poliuretanos , Nylons , Poluentes do Solo/análise , Polietilenos , Esgotos
8.
Environ Sci Technol ; 47(12): 6288-96, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23668881

RESUMO

While graphene oxide (GO) has been found to be the most toxic graphene-based nanomaterial, its environmental fate is still unexplored. In this study, the aggregation kinetics and stability of GO were investigated using time-resolved dynamic light scattering over a wide range of aquatic chemistries (pH, salt types (NaCl, MgCl2, CaCl2), ionic strength) relevant to natural and engineered systems. Although pH did not have a notable influence on GO stability from pH 4 to 10, salt type and ionic strength had significant effects on GO stability due to electrical double layer compression, similar to other colloidal particles. The critical coagulation concentration (CCC) values of GO were determined to be 44 mM NaCl, 0.9 mM CaCl2, and 1.3 mM MgCl2. Aggregation and stability of GO in the aquatic environment followed colloidal theory (DLVO and Schulze-Hardy rule), even though GO's shape is not spherical. CCC values of GO were lower than reported fullerene CCC values and higher than reported carbon nanotube CCC values. CaCl2 destabilized GO more aggressively than MgCl2 and NaCl due to the binding capacity of Ca(2+) ions with hydroxyl and carbonyl functional groups of GO. Natural organic matter significantly improved the stability of GO in water primarily due to steric repulsion. Long-term stability studies demonstrated that GO was highly stable in both natural and synthetic surface waters, although it settled quickly in synthetic groundwater. While GO remained stable in synthetic influent wastewater, effluent wastewater collected from a treatment plant rapidly destabilized GO, indicating GO will settle out during the wastewater treatment process and likely accumulate in biosolids and sludge. Overall, our findings indicate that GO nanomaterials will be stable in the natural aquatic environment and that significant aqueous transport of GO is possible.


Assuntos
Grafite/química , Nanoestruturas/química , Cloreto de Cálcio/química , Fulerenos/química
9.
Sci Total Environ ; 874: 162427, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36841399

RESUMO

Graphene nanomaterials have been commercialized for use in the electronic and biomedical industries, increasing their dissemination into surface waters and subsequent transformation in natural aquatic environment. While the photodegradation of graphene oxide nanomaterials has been investigated in the past, previous research did not consider actual natural aquatic environment and also focused on primarily graphene oxide nanomaterials. In this study, photodegradation of graphene nanomaterials with varying oxidation levels, including graphene oxide (GO) and partially reduced graphene oxide (rGO-2 h) are evaluated in Columbia River Water and compared with each other. Our results indicate that both direct and indirect photolysis of graphene-based nanomaterials will occur simultaneously in natural surface water. However, environmentally relevant concentrations of photosensitizers in surface water are not capable of producing sufficient ·OH to initiate degradation of GO via indirect photolysis. For all conditions tested, GO showed more rapid photodegradation compared to rGO. Overall, direct and indirect photodegradation of graphene oxide nanomaterials in natural surface water is minimal and slow indicating that phototransformation of graphene-based nanomaterials will be insignificant in natural surface water.

10.
Front Chem ; 11: 1132233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936535

RESUMO

Rapid advancement in nanotechnology has led to the development of a myriad of useful nanomaterials that have novel characteristics resulting from their small size and engineered properties. In particular, two-dimensional (2D) materials have become a major focus in material science and chemistry research worldwide with substantial efforts centered on their synthesis, property characterization, and technological, and environmental applications. Environmental applications of these nanomaterials include but are not limited to adsorbents for wastewater and drinking water treatment, membranes for desalination, and coating materials for filtration. However, it is also important to address the environmental interactions and implications of these nanomaterials in order to develop strategies that minimize their environmental and public health risks. Towards this end, this review covers the most recent literature on the environmental implementations of emerging 2D nanomaterials, thereby providing insights into the future of this fast-evolving field including strategies for ensuring sustainable development of 2D nanomaterials.

11.
Water Res ; 239: 120018, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201372

RESUMO

Plastic pollution caused by conventional plastics has promoted the development and use of biodegradable plastics. However, biodegradable plastics do not degrade readily in water; instead, they can generate micro- and nanoplastics. Compared to microplastics, nanoplastics are more likely to cause negative impacts to the aquatic environment due to their smaller size. The impacts of biodegradable nanoplastics highly depend on their aggregation behavior and colloidal stability, which still remain unknown. Here, we studied the aggregation kinetics of biodegradable nanoplastics made of polybutylene adipate co-terephthalate (PBAT) in NaCl and CaCl2 solutions as well as in natural waters before and after weathering. We further studied the effect of proteins on aggregation kinetics with both negative-charged bovine serum albumin (BSA) and positive-charged lysozyme (LSZ). For pristine PBAT nanoplastics (before weathering), Ca2+ destabilized nanoplastic suspensions more aggressively than Na+, with the critical coagulation concentration being 20 mM in CaCl2 vs 325 mM in NaCl. Both BSA and LSZ promoted the aggregation of pristine PBAT nanoplastics, and LSZ showed a more pronounced effect. However, no aggregation was observed for weathered PBAT nanoplastics under most experimental conditions. Further stability tests demonstrated that pristine PBAT nanoplastics aggregated substantially in seawater, but not in freshwater, and only slightly in soil pore water; while weathered PBAT nanoplastics remained stable in all natural waters. These results suggest that biodegradable nanoplastics, especially weathered biodegradable nanoplastics, are highly stable in the aquatic environment, even in the marine environment.


Assuntos
Plásticos Biodegradáveis , Plásticos , Microplásticos , Cloreto de Sódio , Cloreto de Cálcio , Soroalbumina Bovina , Água
12.
Environ Sci Technol ; 46(13): 6968-76, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22455349

RESUMO

This study investigates the contributions of natural organic matter (NOM) and bacteria to the aggregation and deposition of TiO(2) nanoparticles (TNPs) in aquatic environments. Transport experiments with TNPs were conducted in a microscopic parallel plate system and a macroscopic packed-bed column using fluorescently tagged E. coli as a model organism and Suwannee River Humic Acid as a representative NOM. Notably, TNPs were labeled with fluorescein isothiocyanate allowing particles and cells to be simultaneously visualized with a fluorescent microscope. Results from both experimental systems revealed that interactions among TNPs, NOM, and bacteria exhibited a significant dependence on solution chemistry (pH 5 and 7) and ion valence (K(+) and Ca(2+)), and that these interactions subsequently affect TNPs deposition. NOM and E. coli significantly reduced deposition of TNPs, with NOM having a greater stabilizing influence than bacteria. Ca(2+) ions played a significant role in these interactions, promoting formation of large clusters of TNPs, NOM, and bacteria. TNPs transport in the presence of both NOM and E. coli resulted in much less deposition than in the presence of NOM or E. coli alone, indicating a complex combination of interactions involved in stabilization. Generally, over the aquatic conditions considered, the extent of TNPs deposition follows: without NOM or bacteria > with bacteria only > with NOM only > combined bacteria and NOM. This trend should allow better prediction of the fate of TNPs in complex aquatic systems.


Assuntos
Escherichia coli/química , Substâncias Húmicas/análise , Nanopartículas/química , Titânio/química , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Concentração Osmolar , Eletricidade Estática , Microbiologia da Água
13.
Environ Sci Technol ; 46(21): 11752-60, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23016910

RESUMO

In this study, a systematic approach has been followed to investigate the fate and transport of single walled carbon nanotubes (SWCNTs) from synthesis to environmentally relevant conditions. Three widely used SWCNT synthesis methods have been investigated in this study including high pressure carbon monoxide (HiPco), SWeNT CoMoCat, and electric arc discharge technique (EA). This study relates the transport of three SWCNTs (HiPco-D, SG65-D, and P2-D) with different synthesis methods and residual catalyst content revealing their influence on the subsequent fate of the nanotubes. To minimize nanotube bundling and aggregation, the SWCNTs were dispersed using the biocompatible triblock copolymer Pluronic, which allowed the comparison in the transport trends among these SWCNTs. After purification, the residual metal catalyst between the SWCNTs follows the trend: HiPco-D > SG65-D > P2-D. The electrophoretic mobility (EPM) and hydrodynamic diameter of SWCNTs remained insensitive to SWCNT type, pH, and presence of natural organic matter (NOM); but were affected by ionic strength (IS) and ion valence (K(+), Ca(2+)). In monovalent ions, the hydrodynamic diameter of SWCNTs was not influenced by IS, whereas larger aggregation was observed for HiPco-D with IS than P2-D and SG65-D in the presence of Ca(2+). Transport of HiPco-D in the porous media was significantly higher than SG65-D followed by P2-D. Release of HiPco-D from porous media was higher than SG65-D followed by P2-D, though negligible amount of all types of SWCNTs (<5%) was released. Both transport and release patterns follow a similar trend to what was observed for residual metal catalysts in SWCNTs. Addition of NOM increased the transport of all SWCNTs primarily due to electrosteric repulsion. HiPco-D was notably more acidic than SG65-D followed by P2-D, which is similar to the transport trend. Overall, it was observed that the synthesis methods resulted in distinctive breakthrough trends, which were correlated to metal content. These findings will facilitate the safe design of environmental friendly SWCNTs by minimizing mobility in aquatic environments.


Assuntos
Metais/química , Nanotubos de Carbono/química , Poluentes Químicos da Água/química , Catálise , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Luminescência , Nanotubos de Carbono/toxicidade , Porosidade , Movimentos da Água , Poluentes Químicos da Água/toxicidade
14.
Environ Sci Process Impacts ; 24(11): 2129-2139, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36205194

RESUMO

The erosion of wildfire ash from the forest floor to nearby surface waters presents a concern due to potential contamination and alteration of water quality. Meanwhile, the properties of wildfire ash that drive ash particle stability in aquatic systems, mobilization downstream, and transport of contaminants are not well known. Physicochemical properties of ash samples from three wildfires were characterized to understand the relation of ash color and combustion completeness with particle stability and mobilization in aquatic systems. Generally, lighter colored ash, indicative of greater combustion temperatures, had higher pH, electrical conductivity, specific surface area, and zeta potential, and smaller particle size than darker ash and unburned soils. Zeta potential was used as an indication of particle surface charge. White ash had the greatest mean zeta potential (-31.8 ± -11.5 mV), followed by gray ash and dark gray ash. Black ash had similar zeta potential to unburned soils. However, with adjustment to the same pH range the ash and unburned soils had similar mean zeta potentials, although lighter ashes had high variability. Dark gray ash leached the highest organic carbon and nitrogen while white ash leached the lowest C and N, similar to unburned soils. The results suggest that high combustion temperature wildfire ash particles will have greater potential for mobilization downstream and may be more stable in both natural and engineered water systems. However, the high organic matter released from dark gray ashes will likely increase particle stability through steric repulsion. More stable particles have greater potential for downstream transport to aquatic ecosystems or water supplies and increase the possibility of post-fire contamination from ash.


Assuntos
Incêndios Florestais , Ecossistema , Florestas , Qualidade da Água , Solo/química
15.
Water Res ; 197: 117066, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33774463

RESUMO

Interactions of nanoscale plastics with natural organic matter (NOM) and silica surfaces were investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Polyethylene and polystyrene are the most used plastic polymers and most likely to accumulate in the environment, and thus their nano-scale interactions were investigated in this study. Deposition and release of polyethylene and polystyrene nanoscale plastics were investigated on silica and NOM-coated surfaces in the presence of different salt types (NaCl, CaCl2, MgCl2) and ionic strengths (IS). Polyethylene nanoscale plastics showed negligible deposition on silica surface, while significant deposition of polystyrene nanoscale plastics was observed on silica surface. However, both polyethylene and polystyrene nanoscale plastics showed significant deposition on NOM-coated surfaces, with polystyrene showing higher deposition. Increased IS resulted in greater deposition of both polyethylene and polystyrene nanoscale plastics on NOM-coated surfaces due to the functional groups, following DLVO theory. Deposited polyethylene nanoscale plastics on NOM-coated surfaces can be remobilized whereas deposition of polystyrene nanoscale plastics was irreversible on both silica and NOM-coated surfaces. Overall, higher deposition of nanoscale plastics on NOM-coated surfaces indicates that fate and mobility of nanoscale plastics in the environment will be significantly governed by their interactions with NOM.


Assuntos
Técnicas de Microbalança de Cristal de Quartzo , Dióxido de Silício , Concentração Osmolar , Plásticos , Quartzo , Propriedades de Superfície
16.
Sci Total Environ ; 793: 148560, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34328971

RESUMO

The increasing use of engineered nanoparticles (ENPs) in consumer products has led to their increased presence in natural water systems. Here, we present a critical overview of the studies that analyzed the fate and transport behavior of ENPs using real environmental samples. We focused on cerium dioxide, titanium dioxide, silver, carbon nanotubes, and zinc oxide, the widely used ENPs in consumer products. Under field scale settings, the transformation rates of ENPs and subsequently their physicochemical properties (e.g., toxicity and bioavailability) are primarily influenced by the modes of interactions among ENPs and natural organic matter. Other typical parameters include factors related to water chemistry, hydrodynamics, and surface and electronic properties of ENPs. Overall, future nanomanufacturing processes should fully consider the health, safety, and environmental impacts without compromising the functionality of consumer products.


Assuntos
Nanopartículas , Nanotubos de Carbono , Poluentes Químicos da Água , Óxido de Zinco , Nanopartículas/toxicidade , Prata , Poluentes Químicos da Água/análise
17.
Water Environ Res ; 82(12): 2346-56, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21214028

RESUMO

Secondary treated municipal wastewater is a promising alternative to fresh water as power plant cooling water system makeup water, especially in arid regions. Laboratory and field testing was conducted in this study to evaluate the corrosiveness of secondary treated municipal wastewater for various metals and metal alloys in cooling systems. Different corrosion control strategies were evaluated based on varied chemical treatment. Orthophosphate, which is abundant in secondary treated municipal wastewater, contributed to more than 80% precipitative removal of phosphorous-based corrosion inhibitors. Tolyltriazole worked effectively to reduce corrosion of copper (greater than 95% inhibition effectiveness). The corrosion rate of mild steel in the presence of free chlorine 1 mg/L (as Cl2) was approximately 50% higher than in the presence of monochloramine 1 mg/L (as Cl2), indicating that monochloramine is a less corrosive biocide than free chlorine. The scaling layers observed on the metal alloys contributed to corrosion inhibition, which could be seen by comparing the mild steel 21-day average corrosion rate with the last 5-day average corrosion rate, the latter being approximately 50% lower than the former.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Água/química , Corrosão , Técnicas Eletroquímicas
18.
Water Res ; 171: 115401, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31884379

RESUMO

The widespread use and release of plastics in nature have raised global concerns about their impact on public health and the environment. While much research has been conducted on macro- and micro-sized plastics, the fate of nanoscale plastics remains unexplored. In this study, the aggregation kinetics and stability of polyethylene and polystyrene nanoscale plastics were investigated over a wide range of aquatic chemistries (pH, salt types (NaCl, CaCl2, MgCl2), ionic strength) relevant to the natural environment. Results showed that salt types and ionic strength had significant effects on the stability of both polyethylene and polystyrene nanoscale plastics, while pH had none. Aggregation and stability of both polyethylene and polystyrene nanoscale plastics in the aquatic environment followed colloidal theory (DLVO theory and Schulze-Hardy rule), similar to other colloidal particles. The critical coagulation concentration (CCC) values of polyethylene nanoscale plastics were lower for CaCl2 (0.1 mM) compared to NaCl (80 mM) and MgCl2 (3 mM). Similarly, CCC values of polystyrene nanospheres were 10 mM for CaCl2, 800 mM for NaCl and 25 mM for MgCl2. It implies that CaCl2 destabilized both polyethylene and polystyrene nanoscale plastics more aggressively than NaCl and MgCl2. Moreover, polystyrene nanospheres are more stable in the aquatic environment than polyethylene nanoscale plastics. However, natural organic matter improved the stability of polyethylene nanoscale plastics in water primarily due to steric repulsion, increasing CCC values to 0.4 mM, 120 mM and 8 mM for CaCl2, NaCl and MgCl2 respectively. Stability studies with various water conditions demonstrated that polyethylene nanoscale plastics will be fairly stable in the natural surface waters. Conversely, synthetic surface water, wastewater, seawater and groundwater rapidly destabilized polyethylene nanoscale plastics. Overall, our findings indicate that significant aqueous transport of nanoscale plastics will be possible in natural surface waters.


Assuntos
Eletrólitos , Plásticos , Cinética , Polietileno , Poliestirenos
19.
J Environ Qual ; 49(6): 1679-1689, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33169390

RESUMO

Biosolids can be a source of metals and metal nanoparticles. The objective of this study was to quantify and characterize the accumulation and transport of silver (Ag) in a natural soil that has received agronomically recommended rates of biosolids as fertilizer from 1994 to 2017. Total Ag concentrations were measured in biosolids and soil samples collected from 0 to 10 cm between 1996 and 2017. The depth distribution of Ag in soil to 60-cm depth was measured in 2017. Electron microscopy, in combination with X-ray spectroscopy, and X-ray absorption spectroscopy were used to characterize the Ag. The Ag concentrations in the biosolids-amended soil increased steadily from 1996 until 2007, after which the concentrations leveled off at about 1.25 mg Ag kg-1 soil. This corresponded with a decrease of Ag concentrations in biosolids over time. The majority of the Ag (82%) was confined to the top 10 cm of the soil, small amounts (14%) were detected at 10-to-20-cm depth, and trace amounts (4%) were detected at 30-to-40-cm depth. The Ag in the biosolids was identified as S-containing nanoparticles (Ag2 S) with a diameter of 10-12 nm; however, in soil, the Ag concentrations were too low to allow identification of Ag speciation. This study shows that in a real-world field scenario, biosolids applied at agronomic rates represent a long-term, economically viable source of crop nutrients without increasing the concentration of total Ag in soil above a maximum of 1.5 mg Ag kg-1 . This concentration is below estimated ecotoxicity limits for Ag2 S in soil.


Assuntos
Nanopartículas Metálicas , Poluentes do Solo , Biossólidos , Prata/análise , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA