Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Crit Rev Food Sci Nutr ; 62(6): 1453-1465, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33249882

RESUMO

The traditional wet chemistry analysis is to use combination of specific chemical reactions to quantify a group of compounds with similar chemical and nutritional properties. However, plant cell wall complex is not uniform in terms of chemical, physical or nutritional characteristics and the digestion progress is achieved by a series of enzymatic hydrolysis of specific chemical bonds which cannot be revealed by wet chemistry analysis. Synchrotron-based and globar-sourced mid-infrared spectroscopy instead utilizing the unique absorption of mid-infrared light at different frequencies and more information about specific chemical bonds can be revealed. As a result, taking spectral change during digestion into consideration may give some insight about nutritional utilization features. However, the utilization of synchrotron-based and globar-sourced mid-infrared spectroscopy on feed and food nutritional research is limited. Therefore, the aim of this study is to provide idea about how to systematically study the nutritional and spectral structure feature of faba bean with traditional and advanced synchrotron-based and globar-sourced vibrational molecular spectroscopy. The study reviews (1) Utilization of faba bean for human and animal consumption; (2) Traditional evaluation methods for faba bean nutritional characteristics and (3) Contribution of synchrotron-based and globar-sourced mid-infrared (Mid-IR) spectroscopy techniques to evaluate faba bean structural and molecular properties.


Assuntos
Síncrotrons , Vicia faba , Ração Animal/análise , Animais , Humanos , Espectrofotometria Infravermelho
2.
J Dairy Sci ; 102(12): 10916-10924, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31563319

RESUMO

Several processing techniques can be used to slow the degradation rate in the rumen and thus provide more bypass crude protein (CP) and starch to the small intestine. The aim of this study was to evaluate the effects of processing methods on cool-season adapted oat grain compared with dry-rolled barley grain, when fed as total mixed ration (TMR) for lactating dairy cows. Eight lactating Holstein cows were used in a replicated 4 × 4 Latin square design with 21-d periods and fed TMR with 1 of 4 treatments: dry-rolled oats, steam-flaked oats, pelleted oats, or dry-rolled barley. Dry matter intake (DMI) ranged from 28.19 to 31.61 kg/d and was lower for rolled oats compared with pelleted oats. Despite the nutrient intake being higher for cows fed pelleted oats, those fed rolled oats had the highest milk production and milk fat percentage (49.23 kg/d and 4%, respectively). Ruminal fermentation characteristics were similar across treatments, with only significant differences in concentrations of acetate (lowest for pelleted oats) and total short-chain fatty acids (highest value for rolled barley) and a lower pH for flaked oats at the 9-h and 12-h points. Dietary treatments did not affect total-tract digestibility of dry matter, organic matter, or CP; digestibility of starch was the lowest for rolled barley (89.04%). Measured blood metabolites, urea, glucose, and ß-hydroxybutyrate, were not affected by dietary treatment. Purine derivatives and microbial N supply were also unaffected by dietary treatments. Cows fed flaked oat-based TMR showed the lowest N excretion in milk; however, the lack of difference between diets with regard to urinary N and fecal N excretion resulted in no significant changes in N balance between diets. Therefore, rolled oats allow cows to have higher milk production with lower DMI compared with all other treatments in this study.


Assuntos
Ração Animal , Avena/metabolismo , Bovinos/metabolismo , Indústria de Laticínios , Hordeum/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Feminino , Manipulação de Alimentos , Lactação , Leite , Rúmen/metabolismo , Ruminação Digestiva , Estações do Ano
3.
J Dairy Sci ; 101(9): 7971-7979, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29960778

RESUMO

The objectives of this study were to evaluate the effects of pretreating dairy cow rations with a fibrolytic enzyme derived from Trichoderma reesei (FETR; mixture of xylanase and cellulase; AB Vista, Wiltshire, UK) on lactation performance, digestibility, and feeding behavior in response to feeding a barley silage-based diet. Before starting the dairy trial, in vitro incubations were conducted to determine whether the addition of FETR would have an effect on these animal performance characteristics when applied to a barley silage-based diet for dairy cows. The dairy trial was performed using 8 Holstein dairy cows. The cows were blocked by parity and assigned randomly to 1 of 4 treatments: 0, 0.5, 0.75, and 1 mL of FETR/kg of dry matter (DM) diet in a replicated Latin square design. The pretreatment was applied to the complete diet during the mixing process. The experimental period continued for 22 d, with each experimental period consisting of a 16-d adaptation period and a 6-d sampling period. The daily feed intake of each individual cow was monitored using Insentec feed bins (RIC system, Insentec, Marknesse, the Netherlands). Feeding behavior characteristics were measured during the entire sampling period using the feed bin attendance data. Milk samples were collected in the last 3 d of each experimental period. The addition of FETR linearly increased the in vitro DM digestibility and tended to improve the in vitro digestibility of barley silage. There was a cubic effect of the enzyme levels on the total-tract DM and neutral detergent fiber digestibility. Maximal digestibility was reached at 0.75 mL of FETR/kg of TMR. The milk fat yield, fat-corrected milk, and energy-corrected milk quadratically responded to the incremental levels of FETR. The milk protein percentage linearly improved in response to FETR. Increasing FETR levels resulted in a quadratic effect on feed efficiency. There was no effect of FETR level on feeding behavior. In conclusion, pretreating dairy cow barley silage-based diet with 0.75 mL of FETR/kg of TMR increased the milk production efficiency of dairy cows fed diet containing 34% barley silage (DM basis). The positive effect of adding FETR could benefit the dairy industry in western Canada, where barley silage-based diets are common.


Assuntos
Ração Animal/análise , Bovinos , Digestão/fisiologia , Comportamento Alimentar , Lactação/fisiologia , Animais , Canadá , Dieta , Feminino , Hordeum , Países Baixos , Gravidez , Silagem , Zea mays
4.
J Dairy Sci ; 96(10): 6631-43, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23958021

RESUMO

To our knowledge, no previous research exists concerning the molecular structure and metabolic characteristics of the proteins and energy that new cool-season corn varieties provide for dairy cattle. The objectives of this study were to identify the differences in the molecular structures of proteins among several new cool-season corn varieties [Pioneer P7443R, Pioneer P7213R, Pioneer P7535R (Pioneer Hi-Bred International Inc., Johnston, IA), Hyland Baxxos RR, Hyland SR22, and Hyland SR06 (Hyland Seeds, Blenheim, ON, Canada)] using Fourier transform infrared attenuated total reflectance (FT/IR-ATR) molecular spectroscopy, and to determine the nutrient profile and supply that each variety provided for dairy cattle. The protein molecular structure studies showed that the amide I to amide II ratio ranged from 1.09 to 1.66 and that the α-helix to ß-sheet ratio ranged from 0.95 to 1.01 among the new cool-season corn varieties. Energy content was significantly different among the new varieties. We found significant differences in the protein and carbohydrate subfractions and in the ruminal degradation kinetics of the organic matter, crude protein, starch, and neutral detergent fiber of the new varieties. The new varieties had similar estimated intestinal digestibilities for rumen undegraded crude protein. However, the new varieties had significant differences in predicted total truly absorbable protein, ranging from 39 to 57 g/kg of dry matter, indicating that these newly developed varieties are satisfactory sources of truly absorbed protein for dairy cattle. Further study on the molecular structure profiles of cool-season corn in relation to its nutrient utilization and availability in dairy cattle is necessary.


Assuntos
Ração Animal , Proteínas Alimentares/metabolismo , Metabolismo Energético , Amido/metabolismo , Zea mays/química , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bovinos , Proteínas Alimentares/análise , Proteínas Alimentares/química , Cinética , Estrutura Molecular , Estrutura Secundária de Proteína , Rúmen/metabolismo , Estações do Ano , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
5.
J Dairy Sci ; 95(11): 6695-715, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22939788

RESUMO

The objectives of this study were (1) to reveal the metabolic characteristics of proteins in different batches of feedstock (wheat) for bioethanol production and their co-products (wheat distillers dried grains with solubles, wDDGS) from the same bioethanol processing plant, and (2) to characterize biomolecular spectral profile associated with nutrient digestion in the rumen and intestine of dairy cattle. The metabolic characteristics of proteins were determined using the DVE/OEB system (where DVE=total truly absorbed protein supply, and OEB=degraded balance of protein) based on chemical profiles and rumen and intestinal digestion data from dairy cattle. The biomolecular spectral characteristics were investigated by using the molecular spectroscopy technique attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FT/IR). Multivariate molecular spectral analyses-agglomerative hierarchical cluster analysis (AHCA), and principal component analysis (PCA)-were conducted to identify the spectral differences in biomolecular inherent structure among the wheat and wDDGS batches. The results showed that (1) the metabolic characteristics of proteins in the wheat and wDDGS from the same bioethanol processing plant were significantly affected by batch, with total truly absorbed protein supply (DVE value) ranging from 101 to 116 g/kg of dry matter (DM) in wheat and from 153 to 182 g/kg of DM in wDDGS; (2) the degraded balance of protein (OEB value) in the wDDGS (but not the wheat) from the same bioethanol processing plant was significantly affected by batch, with the OEB value ranging from -19 to -26 g/kg of DM in the wheat and from 145 to 181 g/kg of DM in the wDDGS; and (3) the biomolecular spectral analyses with AHCA and PCA revealed biomolecular spectral profiles and differences among the wheat and wDDGS samples.


Assuntos
Proteínas Alimentares/análise , Triticum/química , Animais , Biocombustíveis/análise , Bovinos , Carboidratos da Dieta/análise , Carboidratos da Dieta/metabolismo , Proteínas Alimentares/metabolismo , Mucosa Intestinal/metabolismo , Tamanho da Partícula , Rúmen/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
6.
J Sci Food Agric ; 92(11): 2265-73, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22337233

RESUMO

BACKGROUND: Alfalfa has the disadvantage of having a rapid initial rate of protein degradation, which results in pasture bloat, low efficiency of protein utilisation and excessive nitrogen (N) pollution into the environment for cattle. Introducing a gene that stimulates the accumulation of monomeric/polymeric anthocyanidins might reduce the ruminal protein degradation rate (by fixing protein and/or direct interaction with microbes) and additionally reduce methane emission. The objectives of this study were to evaluate in vitro fermentation, degradation and microbial N partitioning of three forage colour phenotypes (green, light purple-green (LPG) and purple-green (PG)) within newly developed Lc-progeny and to compare them with those of parental green non-transgenic (NT) alfalfa. RESULTS: PG-Lc accumulated more anthocyanidin compared with Green-Lc (P < 0.05), with LPG-Lc intermediate. Volatile fatty acids and potentially degradable dry matter (DM) and N were similar among the four phenotypes. Gas, methane and ammonia accumulation rates were slower for the two purple-Lc phenotypes compared with NT-alfalfa (P < 0.05), while Green-Lc was intermediate. Effective degradable DM and N were lower in the three Lc-phenotypes (P < 0.05) compared with NT-alfalfa. Anthocyanidin concentration was negatively correlated (P < 0.05) with gas and methane production rates and effective degradability of DM and N. CONCLUSION: The Lc-alfalfa phenotypes accumulated anthocyanidin. Fermentation and degradation parameters indicated a reduced rate of fermentation and effective degradability for both purple anthocyanidin-accumulating Lc-alfalfa phenotypes compared with NT-alfalfa.


Assuntos
Ração Animal/análise , Antocianinas/metabolismo , Medicago sativa/metabolismo , Ciclo do Nitrogênio , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Rúmen/microbiologia , Amônia/metabolismo , Ração Animal/efeitos adversos , Animais , Bovinos , Doenças dos Bovinos/prevenção & controle , Cruzamentos Genéticos , Digestão , Ácidos Graxos Voláteis/metabolismo , Fermentação , Gases/metabolismo , Cinética , Medicago sativa/genética , Metano/metabolismo , Modelos Biológicos , Pigmentos Biológicos/genética , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estabilidade Proteica
7.
J Agric Food Chem ; 65(41): 8979-8991, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28914059

RESUMO

The main objectives of this study were (1) to assess the magnitude of differences among new barley silage varieties (BS) selected for varying rates of in vitro neutral detergent fiber (NDF) digestibility (ivNDFD; Cowboy BS with higher ivNDFD, Copeland BS with intermediate ivNDFD, and Xena BS with lower ivNDFD) with regard to their carbohydrate (CHO) molecular makeup, CHO chemical fractions, and rumen degradability in dairy cows in comparison with a new corn silage hybrid (Pioneer 7213R) and (2) to quantify the strength and pattern of association between the molecular structures and digestibility of carbohydrates. The carbohydrate-related molecular structure spectral data was measured using advanced vibrational molecular spectroscopy (FT/IR). In comparison to BS, corn silage showed a significantly (P < 0.05) higher level of starch and energy content and higher degradation of dry matter (DM). Cowboy BS had lower feeding value (higher indigestible fiber content and lower starch content) and lower DM degradation in the rumen compared to other BS varieties (P < 0.05). The spectral intensities of carbohydrates were significantly (P < 0.05) correlated with digestible carbohydrate content of the silages. In conclusion, the univariate approach with only one-factor consideration (ivNDFD) might not be a satisfactory method for evaluating and ranking BS quality. FT/IR molecular spectroscopy can be used to evaluate silage quality rapidly, particularly the digestible fiber content.


Assuntos
Ração Animal/análise , Carboidratos/química , Bovinos/metabolismo , Hordeum/química , Silagem/análise , Zea mays/química , Animais , Digestão , Hordeum/metabolismo , Rúmen/metabolismo , Amido/química , Amido/metabolismo , Zea mays/metabolismo
8.
J Agric Food Chem ; 52(6): 1484-94, 2004 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-15030200

RESUMO

The objective of this study was to use synchrotron transmission FTIR microspectroscopy as a rapid, direct, and nondestructive analytical technique to reveal molecular microstructural-chemical features within tissue in grain barley. The results showed that synchrotron transmission FTIR microspectroscopy could provide spectral, chemical, and functional group characteristics of grain barley tissue at ultrahigh spatial resolutions. The spatially localized structural-chemical distributions of biological components (lignin, cellulose, protein, lipid, and carbohydrates) and biological component ratios could be imaged. Such information on molecular microstructural-chemical features within the tissue can be used for plant breeding programs for selecting superior varieties of barley for special purposes and for prediction of grain barley quality and nutritive value for humans and animals.


Assuntos
Hordeum/química , Hordeum/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Carboidratos/análise , Celulose/análise , Lignina/análise , Lipídeos/análise , Proteínas de Plantas/análise , Síncrotrons
9.
J Agric Food Chem ; 52(24): 7345-52, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15563218

RESUMO

Synchrotron Fourier transform infrared (FTIR) microspectroscopy as a rapid, direct, and nondestructive analytical technique can explore molecular chemical features of the microstructure of biological samples. The objective of this study was to use synchrotron FTIR microspectroscopy to image the molecular chemistry of corn (cv. Pioneer 39P78) to reveal spatial intensity and distribution of chemical functional groups in corn tissue. This experiment was performed at the U2B station of the National Synchrotron Light Source in Brookhaven National Laboratory (NSLS-BNL, Upton, NY). The Pioneer corn tissue was imaged from the pericarp, seed coat, aleurone, and endosperm under peaks at 1736 (carbonyl C=O ester), 1510 (aromatic compound), 1650 (amide I), 1550 (amide II), 1246 (cellulosic material), 1160 (CHO), 1150 (CHO), 1080 (CHO), 929 (CHO), 860 (CHO), 3350 (OH and NH stretching), 2929 (CH(2) stretching band), and 2885 cm(-1) (CH(3) stretching band). The results showed that with synchrotron FTIR microspectroscopy, the images of the molecular chemistry of Pioneer corn could be generated. Such information on the microstructural-chemical features of grain corn can also be used for corn breeding programs for selecting superior varieties of corn for targeted food and feed purposes and for prediction of corn quality and nutritive value for humans and animals.


Assuntos
Sementes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Síncrotrons , Zea mays/química , Sementes/ultraestrutura , Zea mays/ultraestrutura
10.
J Agric Food Chem ; 52(24): 7353-61, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15563219

RESUMO

Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein. An understanding of the structure of the whole protein is often vital to understanding its digestive behavior in animals and nutritive quality. Usually protein secondary structures include alpha-helix and beta-sheet. The percentages of these two structures in protein secondary structures may influence feed protein quality and digestive behavior. Feathers are widely available as a potential protein supplement. They are very high in protein (84%), but the digestibility of the protein is very low (5%). The objective of this study was to use synchrotron-based Fourier transform infrared (FTIR) microspectroscopy to reveal chemical features of feather protein secondary structure within amide I at ultraspatial resolution (pixel size = 10 x 10 microm), in comparison with other protein sources from easily digested feeds such as barley, oat, and wheat tissue at endosperm regions (without destruction of their inherent structure). This experiment was performed at beamline U2B of the Albert Einstein Center for Synchrotron Biosciences at the National Synchrotron Light Source (NSLS) in Brookhaven National Laboratory (BNL), U.S. Dept of Energy (NSLS-BNL, Upton, NY). The results showed that ultraspatially resolved chemical imaging of feed protein secondary structure in terms of beta-sheet to alpha-helix peak height ratio by stepping in pixel-sized increments was obtained. Using synchrotron FTIR microspectroscopy can distinguish structures of protein amide I among the different feed protein sources. The results show that the secondary structure of feather protein differed from those of other feed protein sources in terms of the line-shape and position of amide I. The feather protein amide I peaked at approximately 1630 cm(-1). However, other feed protein sources showed a peak at approximately 1650 cm(-1). By using multicomponent peak modeling, the relatively quantitative amounts of alpha-helix and beta-sheet in protein secondary structure were obtained, which showed that feather contains 88% beta-sheet and 4% alpha-helix, barley contains 17% beta-sheet and 71% alpha-helix, oat contains 2% beta-sheet and 92% alpha-helix, and wheat contains 42% beta-sheet and 50% alpha-helix. The difference in percentage of protein secondary structure may be part of the reason for different feed protein digestive behaviors. These results demonstrate the potential of highly spatially resolved infrared microspectroscopy to reveal feed protein secondary structure. Information from this study by the infrared probing of feed protein secondary structure may be valuable as a guide for feed breeders to improve and maintain protein quality for animal use.


Assuntos
Ração Animal/análise , Plumas/química , Estrutura Secundária de Proteína , Proteínas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Síncrotrons , Amidas/análise , Amidas/química , Animais , Digestão
11.
J Agric Food Chem ; 50(6): 1625-30, 2002 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-11879047

RESUMO

Oat hulls, an agricultural byproduct, contain a relatively high amount of ferulic acid (FA; 4-hydroxy-3-methoxycinnamic acid), which is believed to be inhibitory to oat hull biodegradability by rumen microorganisms. In this paper, Aspergillus ferulic acid esterase (FAE) was investigated for its ability to release FA from oat hulls. The objectives were to determine the effects of particle size of oat hulls (ground to pass through 1 mm and 250 microm screens and a 100 microm sieve) on release of FA by FAE both in the presence and in the absence of Trichoderma xylanase. The results show that the release of FA by FAE was dependent upon the particle size of oat hulls (< or = 250 microm). In the absence of Trichoderma xylanase, little FA was released by FAE. In the presence of Trichoderma xylanase, there was a significant release of FA by FAE, indicating a synergistic interaction between FAE and Trichoderma xylanase on release of FA from oat hulls. These results indicate that FAE is able to break the ester linkage between FA and the attached sugar, releasing FA from oat hulls. This may leave the remainder of the polysaccharides open for further hydrolytic attack by rumen microorganisms. It is likely that removing FA from oat hulls could improve rumen biodegradability, thus improving the nutritional value of oat hulls.


Assuntos
Aspergillus/enzimologia , Avena/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Ácidos Cumáricos/metabolismo , Trichoderma/enzimologia , Xilosidases/metabolismo , Avena/química , Ácidos Cumáricos/análise , Fibras na Dieta/análise , Proteínas Alimentares/análise , Tamanho da Partícula , Xilano Endo-1,3-beta-Xilosidase
12.
J Agric Food Chem ; 51(20): 6062-7, 2003 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-13129317

RESUMO

Synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-FTIR) is an advanced bioanalytical technique capable of exploring the chemistry within microstructures of plant and animal tissues with a high signal to noise ratio at high ultraspatial resolutions (3-10 microm) without destruction of the intrinsic structures of a tissue. This technique is able to provide information relating to the quantity, composition, structure, and distribution of chemical constituents and functional groups in a tissue. The objective of this study was to illustrate how the SR-FTIR technique can be used to image inherent structures of plant tissues on a cellular level (pixel size, approximately 10 microm x 10 microm). The results showed that with the extremely bright synchrotron light, spectra with high signal to noise ratios were obtained from areas as small as 10 microm x 10 microm in the plant tissue, which allowed us to "see" plant tissue in a chemical sense on a cellular level. The ultraspatial resolved imaging of plant tissues by stepping in pixel-sized increments was obtained. Chemical distributions of plant tissues such as lignin, cellulose, protein, lipid, and total carbohydrate could be mapped. These images revealed the chemical information of plant intrinsic structure. In conclusion, SR-FTIR can provide chemical and functional characteristics of plant tissue at high ultraspatial resolutions. The SR-FTIR microspectroscopic images can generate spatially localized functional group and chemical information within cellular dimensions.


Assuntos
Plantas/química , Plantas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Síncrotrons , Hordeum/química , Hordeum/ultraestrutura , Sementes/química , Sementes/ultraestrutura
13.
J Agric Food Chem ; 51(1): 218-23, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12502411

RESUMO

Hydroxycinnamic acids, mainly ferulic and p-coumaric acids, are believed to be inhibitory to ruminal biodegradability of complex cell wall materials such as oat hulls. Previous studies have shown that a novel enzyme, Aspergillus ferulic acid esterase, and Trichoderma xylanase act synergistically to break the ester linkage between ferulic acid and the attached sugar of feruloyl polysaccharides, releasing ferulic acid from oat hulls. In this paper, we examined the enzymic release of reducing sugars from oat hulls by the actions of individual enzymes (Aspergillus ferulic acid esterase at 13 mU, 6.4 U, and 4678.4 U/assay; cellulase at 20 levels, ranging from 7.8 mU to 2772.7 U/assay; Trichoderma xylanase at 20 levels, ranging from 7.8 mU to 4096 U/assay) and by the combined action of cellulase at six levels (62.5 mU, 2 U, 16 U, 128 U, 1024 U, and 2772.7 U/assay), Aspergillus ferulic acid esterase at 13 mU/assay, and Trichoderma xylanase at two levels (1 U and 256 U/assay). The amount of total acid-extractable reducing sugars in the oat hulls used in this study was 793.8 +/- 8.0 microg/mg. The results show that after a 24-h incubation with Aspergillus ferulic acid esterase alone, no reducing sugars were observed to be released from oat hulls. With cellulase as the sole enzyme, as the concentration increased from 7.8 mU to 2772.7 U/assay, the release of reducing sugars increased (P < 0.01) from 0 to 39% of the total present, with the highest release at 512 U/assay. With Trichoderma xylanase alone, as the concentration increased from 7.8 mU to 4096 U/assay, the release of reducing sugars increased (P < 0.01) from 4.9 to 33%, with the highest release at 2048 U/assay. When incubated together with Trichoderma xylanase (1 U or 256 U/assay) and Aspergillus ferulic acid esterase (13 mU/assay), cellulase at all six levels (62.5 mU, 2 U, 16 U, 128 U, 1024 U and 2772.7 U/assay) significantly increased the release of reducing sugars (P < 0.01) from 8 to 69%. These results indicate that the synergistic interaction between Aspergillus ferulic acid esterase and Trichoderma xylanase on the release of ferulic acid from feruloyl polysaccharides of oat hulls makes the remainder of the polysaccharides open for further hydrolytic attack and facilitates the accessibility of the main chain of polysaccharides to cellulase. This action extends the cell wall hydrolysis, thus releasing a higher yield of reducing sugars. Such enzymic pretreatment of oat hulls may provide a unique advantage to rumen microorganisms for the biodegradation of the complex cell walls of byproduct feeds such as oat hulls.


Assuntos
Avena/metabolismo , Metabolismo dos Carboidratos , Hidrolases de Éster Carboxílico/metabolismo , Celulase/metabolismo , Sementes/metabolismo , Xilosidases/metabolismo , Aspergillus/enzimologia , Avena/química , Carboidratos/análise , Ácidos Cumáricos/análise , Propionatos , Análise de Regressão , Sementes/química , Trichoderma/enzimologia , Xilano Endo-1,3-beta-Xilosidase
14.
J Agric Food Chem ; 61(50): 12315-26, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24279321

RESUMO

Molecular spectroscopy is able to reveal structural features of biomaterials. Corn grown in Canadian prairies is known as cool-season corn, which is different from warm-season corn varieties. To our knowledge, to date, there has been no study on the magnitude difference in structure on a molecular basis among cultivars, no study on biochemical and nutritive profiles associated with heat unit, and no study on how heat unit affects the molecular structure and biochemical and nutritive profiles. This study investigates how corn varieties grown in cooler climates are affected by crop heat units (CHU) in relation to molecular spectral profiles, nutrient storage, biochemical composition, and nutritive value of silage among different cool-season corn cultivars. Corn cultivars (Pioneer and Dekalb) were from seven farm locations, and samples were analyzed for major nutrients (digestible and metabolic energy and protein). The Fourier transform infrared (FT/IR) spectroscopic technique was applied to understand and differentiate molecular structural spectral profiles in silage. A correlation (P < 0.05) of CHU with some nutrients (mean ± SD, %DM) (CP, 8.1 ± 1.3, r = 0.56; NDF, 56.3 ± 3.5, r = -0.54; ADF, 33.6 ± 2.3, r = -0.71; NDICP, 1.6 ± 0.4, r = -0.66; SCP, 4.2 ± 1.3, r = 0.61), protein and carbohydrate fractions (mean ± SD, %DM) (PB1 (= fast degradable protein fraction), 1.3 ± 0.4, r = 0.54; PB3 (= slowly degradable protein fraction), 1.5 ± 0.4, r = -0.74; CB2 (= medium degradable carbohydrate fraction), 45.1 ± 2.8, r = -0.65; CB3 (= slowly degradable carbohydrate fraction), 13.9 ± 0.9, r = -0.54) and intestinal availability of ruminally degraded fractions (mean ± SD, %DM) (rdPB1, 1.1 ± 0.3, r = 0.54; rdPB3, 1.0 ± 0.3, r = -0.74; RDP, 6.6 ± 1.2, r = 0.59; rdCB2, 40.0 ± 2.5, r = -0.65; rdCB3, 8.9 ± 0.6, r = 0.54; RDCHO, 50.1 ± 2.9, r = -0.65) was found contentious. Molecular spectral data indicated many similarities and few differences among the cultivars. However, CHU correlated (r = -0.4, P < 0.05) with molecular spectral intensity ratio of carbohydrate to amide I. This result indicates that molecular structural differences may be influenced by epiphytic bacterial compounds. Cool corn cultivars were grown acceptably well in cooler dry climates, and those silages had acceptable nutrient levels for cattle. Cultivars that reached target CHU were found to be optimal in nutrient and energy synchronization aspect.


Assuntos
Ração Animal/análise , Silagem/análise , Zea mays/química , Animais , Carboidratos/análise , Ecossistema , Análise Multivariada , Valor Nutritivo , Proteínas de Plantas/análise , Estações do Ano , Zea mays/classificação , Zea mays/crescimento & desenvolvimento
15.
Onderstepoort J Vet Res ; 80(1): 577, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24396915

RESUMO

Three each of 3-year-old Angus and Simmental heifers, surgically modified to collect bile, were used to measure the effects of pregnancy and breed on bile flow, biliary copper and zinc excretion and plasma copper and zinc concentrations. Bile copper excretion was significantly higher at 7-mo of pregnancy when samples from both breeds were pooled. From then onwards it declined to its lowest, one week post-partum. During pregnancy, plasma copper concentration increased slightly, reaching its highest level at 7-mo of pregnancy and then decreased slightly until full term. In pooled samples from both breeds, the correlation between increase in bile copper excretion and plasma copper concentration from 0 to 7-mo of pregnancy was high (r = 0.85) and significant (p < 0.05). Plasma zinc concentration decreased to the lowest level around 6-mo of pregnancy but increased thereafter until full term. In cows that were dried off one week after parturition, major shifts in bile and plasma copper and zinc parameters occurred at one week following and these coincided with a marked decline of bile flow and bile copper and zinc excretion. By 3-mo post-partum, biliary copper and zinc excretion and plasma copper and zinc concentrations had reached levels observed prior to pregnancy. When the data from all samples were pooled, the bile flow and bile copper excretion were significantly (p < 0.05) higher in Simmental, and plasma copper and zinc concentration higher in the Angus.


Assuntos
Bile/química , Bovinos/metabolismo , Cobre/análise , Prenhez/metabolismo , Zinco/análise , Animais , Bile/metabolismo , Cruzamento , Bovinos/sangue , Cobre/metabolismo , Feminino , Gravidez , Prenhez/sangue , Zinco/metabolismo
16.
J Agric Food Chem ; 61(47): 11250-60, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24156528

RESUMO

The synchrotron-based Fourier transform infrared microspectroscopy (SR-FTIRM) technique was used to quantify molecular structural features of the four hulless barley lines with altered carbohydrate traits [amylose, 1-40% of dry matter (DM); ß-glucan, 5-10% of DM] in relation to rumen degradation kinetics, intestinal nutrient digestion, and predicted protein supply. Spectral features of ß-glucan (both area and heights) in hulless barley lines showed a negative correlation with protein availability in the small intestine, including truly digested protein in the small intestine (DVE) (r = -0.76, P < 0.01; r = -0.84, P < 0.01) and total metabolizable protein (MP) (r = -0.71, P < 0.05; r = -0.84, P < 0.01). Variation in absorption intensities of total carbohydrate (CHO) was observed with negative effects on protein degradation, digestion, and potential protein supply (P < 0.05). Molecular structural features of CHO in hulless barley have negative effects on the supply of true protein to ruminants. The results clearly indicated the impact of the carbohydrate-protein structure and matrix.


Assuntos
Hordeum/química , Hordeum/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Amilose/metabolismo , Ração Animal , Animais , Carboidratos/química , Endosperma/química , Cinética , Proteínas de Plantas/química , Proteínas de Plantas/farmacocinética , Rúmen/metabolismo , Ruminantes/metabolismo , Síncrotrons , beta-Glucanas/metabolismo
17.
Arch Anim Nutr ; 64(5): 425-36, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21114237

RESUMO

Recently, a new genotype of oat (cv. CDC SO-I, containing low-hull lignin and high-fat groat), has been developed. The objective of this study was to determine the effects of partially replacing barley and corn with the new oat and its micronisation on lactating performance of dairy cows. In a double 4 x 4 Latin square design, eight lactating dairy cows (732 +/- 46 kg body weight [BW]; parity 4 +/- 2) received total mixed rations with a forage-to-concentrate ratio of 50:50 (DM basis). The four treatments were: T1, barley only (control); T2, raw oat, replacing 42% barley of T1; T3, micronised oat, replacing 42% barley of T1; and T4, raw oat and corn blend, replacing 100% barley of T1. The results showed that dairy cows fed the new oats (T2, T3) produced more fat (p < 0.05) and more fat corrected milk (p < 0.10) than cows fed barley only (T1). The performance of cows fed the new oat and corn blend (T4) was not significantly different from other treatments. The micronisation significantly reduced protein degradability (74 vs. 63%,p < 0.05), but increased starch degradability (87 vs. 93%,p < 0.05) of the new oat. However, the overall results suggested that micronisation did not show a significant impact on milk production. The newly developed CDC SO-I oat can replace 42% barley (in T1) as a concentrate supplement in dairy total mixed rations with an increased yield of milk fat and fat corrected milk.


Assuntos
Ração Animal/análise , Avena/química , Bovinos/fisiologia , Hordeum/química , Lactação/fisiologia , Zea mays/química , Animais , Avena/genética , Indústria de Laticínios , Digestão/fisiologia , Feminino , Manipulação de Alimentos , Leite/fisiologia
18.
J Agric Food Chem ; 57(11): 4777-83, 2009 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-19432476

RESUMO

Barley contains hydroxycinnamic acids, mainly ferulic acid (FA; 3-methoxy-4-hydroxycinnamic acid) and p-coumaric acid (PCA; 4-hydroxycinnamic acid). Ferulic acid is produced via the phenylpropanoid biosynthetic pathway and covalently cross-linked to polysaccharides by ester bonds and to components of lignin mainly by ether bonds. Various studies have consistently indicated that FA is among the factors most inhibitory to the biodegradability of cell wall polysaccharides. p-Coumaric acid is also covalently linked to polysaccharides (minor) and lignin (major), but does not form the inhibitory cross-linkages as FA does and is considered to represent cell wall lignification. The objectives in this study were to (1) determine genotypic differences in physicochemical characteristics in terms of (a) two major low molecular weight hydroxycinnamic acid profiles (FA, PCA, PCA-to-FA ratio, which are associated with digestion and lignification), (b) particle size distributions (mean, median), (c) hull content, and (d) digestion-resistant fiber fractions and (2) determine genotypic differences in in situ solubilization kinetics of FA and PCA. The barley varieties grown during three consecutive years (2003, 2004, and 2005) included AC Metcalfe, CDC Dolly, McLeod, CDC Helgason, CDC Trey, and CDC Cowboy. These barleys were grown at the Kernen Crop Research Farm (KCRF, University of Saskatchewan) and managed using standard agronomic production practices. Results showed that there were significant differences in hull content (P < 0.05) among the barley varieties, with Mcleod having the highest (11% DM) and CDC Dolly and CDC Helgason the lowest hull content (9% DM). Ferulic acid ranged from 555 to 663 microg/g of DM (P < 0.05). p-Coumaric acid ranged (P < 0.05) from 283 to 345 microg/g of DM. PCA-to-FA ratios ranged (P < 0.05) from 0.49 to 0.56. Mean particle size ranged (P < 0.05) from 3.06 to 3.66 mm, and median particle size ranged (P < 0.05) from 2.71 to 3.04 mm. In situ DM degradability ranged from 44 to 49%. In situ solubilized FA fractions ranged (P < 0.05) from 60 to 72% and of PCA ranged (P < 0.05) from 71 to 81%. In conclusion, CDC Dolly was best and McLeod barley was poorest as feed barley in terms of hull and FA contents. There were significant genotypic differences in FA, PCA and their ratio, hull content, particle size distribution, and in situ solubilization of FA and PCA among the barley varieties.


Assuntos
Ácidos Cumáricos/química , Hordeum/química , Hordeum/genética , Genótipo , Cinética , Peso Molecular , Tamanho da Partícula , Propionatos
19.
J Agric Food Chem ; 57(15): 6871-8, 2009 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-19588991

RESUMO

The objectives of this study were to use Fourier transform infrared microspectroscopy (FTIRM) to determine structural makeup (features) of cereal grain endosperm tissue and to reveal and identify differences in protein and carbohydrate structural makeup between different cereal types (corn vs barley) and between different varieties within a grain (barley CDC Bold, CDC Dolly, Harrington, and Valier). Another objective was to investigate how these structural features relate to rumen degradation kinetics. The items assessed included (1) structural differences in protein amide I to nonstructural carbohydrate (NSC, starch) intensity and ratio within cellular dimensions; (2) molecular structural differences in the secondary structure profile of protein, alpha-helix, beta-sheet, and their ratio; (3) structural differences in NSC to amide I ratio profile. From the results, it was observed that (1) comparison between grain types [corn (cv. Pioneer 39P78) vs barley (cv. Harrington)] showed significant differences in structural makeup in terms of NSC, amide I to NSC ratio, and rumen degradation kinetics (degradation ratio, effective degradability of dry matter, protein and NSC) (P < 0.05); (2) comparison between varieties within a grain (barley varieties) also showed significant differences in structural makeup in terms of amide I, NSC, amide I to NSC ratio, alpha-helix and beta-sheet protein structures, and rumen degradation kinetics (effective degradability of dry matter, protein, and NSC) (P < 0.05); (3) correlation analysis showed that the amide I to NSC ratio was strongly correlated with rumen degradation kinetics in terms of the degradation rate (R = 0.91, P = 0.086) and effective degradability of dry matter (R = 0.93, P = 0.071). The results suggest that with the FTIRM technique, the structural makeup differences between cereal types and between different varieties within a type of grain could be revealed. These structural makeup differences were related to the rate and extent of rumen degradation.


Assuntos
Ração Animal/análise , Grão Comestível/química , Rúmen/fisiologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Animais , Metabolismo dos Carboidratos , Carboidratos/química , Digestão , Grão Comestível/metabolismo , Feminino , Cinética , Estrutura Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Rúmen/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA