Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Aging Cell ; 20(11): e13484, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34612580

RESUMO

Werner syndrome (WS) is an accelerated aging disorder characterized by genomic instability, which is caused by WRN protein deficiency. WRN participates in DNA metabolism including DNA repair. In a previous report, we showed that WRN protein is recruited to laser-induced DNA double-strand break (DSB) sites during various stages of the cell cycle with similar intensities, supporting that WRN participates in both non-homologous end joining (NHEJ) and homologous recombination (HR). Here, we demonstrate that the phosphorylation of WRN by CDK2 on serine residue 426 is critical for WRN to make its DSB repair pathway choice between NHEJ and HR. Cells expressing WRN engineered to mimic the unphosphorylated or phosphorylation state at serine 426 showed abnormal DSB recruitment, altered RPA interaction, strand annealing, and DSB repair activities. The CDK2 phosphorylation on serine 426 stabilizes WRN's affinity for RPA, likely increasing its long-range resection at the end of DNA strands, which is a crucial step for HR. Collectively, the data shown here demonstrate that a CDK2-dependent phosphorylation of WRN regulates DSB repair pathway choice and cell cycle participation.


Assuntos
Quinase 2 Dependente de Ciclina/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA por Junção de Extremidades/genética , Recombinação Homóloga , Transdução de Sinais/genética , Helicase da Síndrome de Werner/metabolismo , Ciclo Celular/genética , Linhagem Celular Tumoral , Quinase 2 Dependente de Ciclina/genética , DNA/metabolismo , Células HEK293 , Humanos , Fosforilação/genética , Proteína de Replicação A/metabolismo , Serina/metabolismo , Transfecção , Síndrome de Werner/genética , Síndrome de Werner/metabolismo , Helicase da Síndrome de Werner/genética
2.
FEBS J ; 286(6): 1058-1073, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30238623

RESUMO

The biology of aging is an area of intense research, and many questions remain about how and why cell and organismal functions decline over time. In mammalian cells, genomic instability and mitochondrial dysfunction are thought to be among the primary drivers of cellular aging. This review focuses on the interrelationship between genomic instability and mitochondrial dysfunction in mammalian cells and its relevance to age-related functional decline at the molecular and cellular level. The importance of oxidative stress and key DNA damage response pathways in cellular aging is discussed, with a special focus on poly (ADP-ribose) polymerase 1, whose persistent activation depletes cellular energy reserves, leading to mitochondrial dysfunction, loss of energy homeostasis, and altered cellular metabolism. Elucidation of the relationship between genomic instability, mitochondrial dysfunction, and the signaling pathways that connect these pathways/processes are keys to the future of research on human aging. An important component of mitochondrial health preservation is mitophagy, and this and other areas that are particularly ripe for future investigation will be discussed.


Assuntos
Envelhecimento/patologia , Instabilidade Genômica , Homeostase , Mitocôndrias/patologia , Estresse Oxidativo , Envelhecimento/metabolismo , Animais , Metabolismo Energético , Humanos , Mitocôndrias/metabolismo , Mitofagia , Poli(ADP-Ribose) Polimerases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA