Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 20(3): e1011088, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437248

RESUMO

Bacterial type IV secretion systems (T4SSs) are a versatile family of macromolecular translocators, collectively able to recruit diverse DNA and protein substrates and deliver them to a wide range of cell types. Presently, there is little understanding of how T4SSs recognize substrate repertoires and form productive contacts with specific target cells. Although T4SSs are composed of a number of conserved subunits and adopt certain conserved structural features, they also display considerable compositional and structural diversity. Here, we explored the structural bases underlying the functional versatility of T4SSs through systematic deletion and subunit swapping between two conjugation systems encoded by the distantly-related IncF plasmids, pED208 and F. We identified several regions of intrinsic flexibility among the encoded T4SSs, as evidenced by partial or complete functionality of chimeric machines. Swapping of VirD4-like TraD type IV coupling proteins (T4CPs) yielded functional chimeras, indicative of relaxed specificity at the substrate-TraD and TraD-T4SS interfaces. Through mutational analyses, we further delineated domains of the TraD T4CPs contributing to recruitment of cognate vs heterologous DNA substrates. Remarkably, swaps of components comprising the outer membrane core complexes, a few F-specific subunits, or the TraA pilins supported DNA transfer in the absence of detectable pilus production. Among sequenced enterobacterial species in the NCBI database, we identified many strains that harbor two or more F-like plasmids and many F plasmids lacking one or more T4SS components required for self-transfer. We confirmed that host cells carrying co-resident, non-selftransmissible variants of pED208 and F elaborate chimeric T4SSs, as evidenced by transmission of both plasmids. We propose that T4SS plasticity enables the facile assembly of functional chimeras, and this intrinsic flexibility at the structural level can account for functional diversification of this superfamily over evolutionary time and, on a more immediate time-scale, to proliferation of transfer-defective MGEs in nature.


Assuntos
Fator F , Sistemas de Secreção Tipo IV , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/metabolismo , Proteínas de Fímbrias/genética , Plasmídeos/genética , DNA Bacteriano , Proteínas de Bactérias/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(18): e2119907119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35471908

RESUMO

The Porphyromonas gingivalis type IX secretion system (T9SS) promotes periodontal disease by secreting gingipains and other virulence factors. By in situ cryoelectron tomography, we report that the P. gingivalis T9SS consists of 18 PorM dimers arranged as a large, caged ring in the periplasm. Near the outer membrane, PorM dimers interact with a PorKN ring complex of ∼52 nm in diameter. PorMKN translocation complexes of a given T9SS adopt distinct conformations energized by the proton motive force, suggestive of different activation states. At the inner membrane, PorM associates with a cytoplasmic complex that exhibits 12-fold symmetry and requires both PorM and PorL for assembly. Activated motors deliver substrates across the outer membrane via one of eight Sov translocons arranged in a ring. The T9SSs are unique among known secretion systems in bacteria and eukaryotes in their assembly as supramolecular machines composed of apparently independently functioning translocation motors and export pores.


Assuntos
Proteínas de Bactérias , Porphyromonas gingivalis , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Periplasma/metabolismo , Fatores de Virulência/metabolismo
3.
Glob Chang Biol ; 30(1): e17070, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273549

RESUMO

Tidal wetlands sequester vast amounts of organic carbon (OC) and enhance soil accretion. The conservation and restoration of these ecosystems is becoming increasingly geared toward "blue" carbon sequestration while obtaining additional benefits, such as buffering sea-level rise and enhancing biodiversity. However, the assessments of blue carbon sequestration focus primarily on bulk SOC inventories and often neglect OC fractions and their drivers; this limits our understanding of the mechanisms controlling OC storage and opportunities to enhance blue carbon sinks. Here, we determined mineral-associated and particulate organic matter (MAOM and POM, respectively) in 99 surface soils and 40 soil cores collected from Chinese mangrove and saltmarsh habitats across a broad range of climates and accretion rates and showed how previously unrecognized mechanisms of climate and mineral accretion regulated MAOM and POM accumulation in tidal wetlands. MAOM concentrations (8.0 ± 5.7 g C kg-1 ) (±standard deviation) were significantly higher than POM concentrations (4.2 ± 5.7 g C kg-1 ) across the different soil depths and habitats. MAOM contributed over 51.6 ± 24.9% and 78.9 ± 19.0% to OC in mangrove and saltmarsh soils, respectively; both exhibited lower autochthonous contributions but higher contributions from terrestrial or marine sources than POM, which was derived primarily from autochthonous sources. Increased input of plant-derived organic matter along the increased temperature and precipitation gradients significantly enriched the POM concentrations. In contrast, the MAOM concentrations depended on climate, which controlled the mineral reactivity and mineral-OC interactions, and on regional sedimentary processes that could redistribute the reactive minerals. Mineral accretion diluted the POM concentrations and potentially enhanced the MAOM concentrations depending on mineral composition and whether the mineral accretion benefited plant productivity. Therefore, management strategies should comprehensively consider regional climate while regulating sediment supply and mineral abundance with engineering solutions to tap the OC sink potential of tidal wetlands.


Assuntos
Ecossistema , Áreas Alagadas , Solo , Minerais , Sequestro de Carbono , Carbono
4.
Ecotoxicol Environ Saf ; 269: 115739, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016191

RESUMO

The root-associated microbiome assembly substantially promotes (hyper)accumulator plant growth and metal accumulation and is influenced by multiple factors, especially host species and environmental stress. Athyrium wardii (Hook.) is a phytostabilizer that grows in lead (Pb)-zinc (Zn) mine tailings and shows high root Pb accumulation. However, there remains little information on the assembly of the root-associated microbiome of A. wardii and its role in phytostabilization. A field study investigated the structural and functional variation in the root-associated bacterial microbiome of Athyrium wardii (Hook.) exposed to different levels of contamination in Pb-Zn mine tailings. The root compartment dominated the variation in the root-associated bacterial microbiome but the levels of contaminants showed less impact. Bacterial co-occurrence was enhanced in the rhizosphere soil and rhizoplane but tended to be much simpler in the endosphere in terms of network complexity and connectivity. This indicates that the microbial community assembly of A. wardii was non-random and shaped by root selective effects. Proteobacteria, Chloroflexi, Actinobacteria, Cyanobacteria, and Acidobacteriota were generally the dominant bacterial phyla. The genera Crossiella and Bradyrhizobium were enriched in the rhizosphere and cyanobacterial genera were enriched in the endosphere, demonstrating substantial advantages to plant survival and adaptation in the harsh mine environment. Functional categories involved in amino acid and carbohydrate metabolism were abundant in the rhizosphere soil, thus contributing to metal solubility and bioavailability in the rhizosphere. Membrane transporters, especially ATP-binding cassette transporters, were enriched in the endosphere, indicating a potential role in metal tolerance and transportation in A. wardii. The study shows substantial variation in the structure and function of microbiomes colonizing different compartments, with the rhizosphere and endophytic microbiota potentially involved in plant metal tolerance and accumulation during phytostabilization.


Assuntos
Microbiota , Traqueófitas , Chumbo/toxicidade , Chumbo/metabolismo , Plantas , Bactérias , Zinco/toxicidade , Zinco/metabolismo , Solo/química , Rizosfera , Raízes de Plantas/metabolismo , Microbiologia do Solo
5.
Int J Phytoremediation ; 26(2): 241-249, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37463004

RESUMO

Sedum plumbizincicola is a cadmium (Cd) and zinc hyperaccumulator that can activate Cd by rhizosphere acidification. However, there is little understanding of the Cd leaching risk from polluted soil during phytoextraction process. Here, pot and column experiments were conducted to monitor soil Cd leaching characteristics under different rainfall simulation conditions during S. plumbizincicola phytoextraction. Soil Cd leaching increased significantly with increasing simulated rainfall intensity. Compared with normal rainfall (NR), weak rainfall (WR) resulted in a 34.3% decrease in Cd uptake by S. plumbizincicola and also led to a 68.7% decline in Cd leaching. In contrast, Cd leaching under heavy rainfall (HR) was 2.12 times that of NR in the presence of S. plumbizincicola. After two successive growing periods, phytoextraction resulted in a 53.5-66.4% decline in the amount of soil Cd leached compared with controls in which S. plumbizincicola was absent. Even compared with maize cropping as a control, S. plumbizincicola did not instigate a significant increase in Cd leaching. The contribution of Cd leaching loss to the decline in soil total Cd concentration was negligible after phytoextraction in the pot experiment. Overall, the results contribute to our understanding of soil Cd leaching risk by phytoextraction with S. plumbizincicola.


Repeated phytoextraction by hyperaccumulator Sedum plumbizincicola is an important remediation technology to remove Cd from contaminated soils. At the same time, Sedum plumbizincicola can also activate soil Cd by rhizosphere acidification. However, studies on the leaching risk of soil activated Cd during the phytoextraction process are very few. This study looked at the effects of Sedum plumbizincicola growth on soil Cd leaching with the changes in rainfall simulation and plant type. Results showed that repeated phytoextraction with Sedum plumbizincicola did not increase Cd leaching from contaminated soil.


Assuntos
Sedum , Poluentes do Solo , Cádmio , Poluentes do Solo/análise , Biodegradação Ambiental , Solo
6.
Mol Microbiol ; 117(5): 1275-1290, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35434837

RESUMO

F plasmids circulate widely among the Enterobacteriaceae through encoded type IV secretion systems (T4SSF s). Assembly of T4SSF s and associated F pili requires 10 VirB/VirD4-like Tra subunits and eight or more F-specific subunits. Recently, we presented evidence using in situ cryoelectron tomography (cryoET) that T4SSF s undergo structural transitions when activated for pilus production, and that assembled pili are deposited onto alternative basal platforms at the cell surface. Here, we deleted eight conserved F-specific genes from the MOBF12C plasmid pED208 and quantitated effects on plasmid transfer, pilus production by fluorescence microscopy, and elaboration of T4SSF structures by in situ cryoET. Mutant phenotypes supported the assignment of F-specific subunits into three functional Classes: (i) TraF, TraH, and TraW are required for all T4SSF -associated activities, (ii) TraU, TraN, and TrbC are nonessential but contribute significantly to distinct T4SSF functions, and (iii) TrbB is essential for F pilus production but not for plasmid transfer. Equivalent mutations in a phylogenetically distantly related MOB12A F plasmid conferred similar phenotypes and generally supported these Class assignments. We present a new structure-driven model in which F-specific subunits contribute to distinct steps of T4SSF assembly or activation to regulate DNA transfer and F pilus dynamics and deposition onto alternative platforms.


Assuntos
Proteínas de Escherichia coli , Fator F , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Conjugação Genética , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Plasmídeos/genética , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo
7.
New Phytol ; 240(6): 2498-2512, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37846026

RESUMO

Supporting food security while maintaining ecosystem sustainability is one of the most important global challenges for humanity. Optimization of cropping systems is expected to promote the ecosystem services of agroecosystems. Yet, how and why cropping system influences the trade-offs between economic profitability and multiple ecosystem services remain poorly understood. We investigate the influence of six cropping systems on trade-offs between economic profitability and multiple ecosystem services after considering 36 agricultural ecosystem properties using field experiment data from 2020 to 2022. We show that designing cropping system is a critical tool to closing the gap between ecosystem sustainability and commercial profitability. Cropping system with three harvests within 2 yr had higher performance in overall ecosystem multiple services through enhancement of supporting, regulating, and economic performance without compromising provisioning compared with four other systems. These systems diminished the trade-off among multiple services, resulting in a 'win-win' situation for economics and multiple services. By contrast, the monoculture and double cropping systems lead to a strong trade-off between pairwise services including ecosystem health and profitability. Our work illustrates the substantial potential of rotation systems with three harvests within 2 yr in enforcing ecosystem services and closing the trade-offs among multiple agricultural ecosystem services.


Assuntos
Agricultura , Ecossistema , Saúde Ambiental , Conservação dos Recursos Naturais/métodos
8.
Environ Sci Technol ; 57(14): 5891-5902, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36988089

RESUMO

This study employs stable isotope analysis to investigate the mechanisms of cadmium (Cd) and zinc (Zn) interaction in the metal hyperaccumulating plant species Sedum plumbizincicola. To this end, the Cd and Zn isotope compositions of root, stem, leaf, and xylem sap samples were determined during metal uptake and translocation at different Cd and Zn concentrations. The enrichment of light isotopes of both elements in plants during uptake was less pronounced at low metal supply levels, likely reflecting the switch from a low-affinity to a high-affinity transport system at lower levels of external metal supply. The lower δ114/110Cd values of xylem sap when treated with a metabolic inhibitor decreasing the active Cd uptake further supports the preference of heavier Cd isotopes during high-affinity transport. The Δ66Znplant-initial solution or Δ66Znplant-final solution values were similar at different Cd concentrations, indicating negligible interaction of Cd in the Zn uptake process. However, decreasing Zn supply levels significantly increased the enrichment of light Cd isotopes in plants (Δ114/110Cd = -0.08‰) in low-Cd treatments but reduced the enrichment of light Cd isotopes in plants (Δ114/110Cd = 0.08‰) under high Cd conditions. A systematic enrichment of heavy Cd and light Zn isotopes was found in root-to-shoot translocation of the metals. The Cd concentrations of the growth solutions thereby had no significant impact on Zn isotope fractionation during root-to-shoot translocation. However, the Δ114/110Cdtranslocation values hint at possible competition between Cd and Zn for transporters during root-to-shoot transfer and this may impact the transport pathway of Cd. The stable isotope data demonstrate that the interactions between the two metals influenced the uptake and transport mechanisms of Cd in S. plumbizincicola but had little effect on those of Zn.


Assuntos
Cádmio , Sedum , Poluentes do Solo , Solo , Biodegradação Ambiental , Cádmio/análise , Cádmio/metabolismo , Isótopos/análise , Isótopos/metabolismo , Isótopos/farmacologia , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Sedum/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Zinco/análise , Isótopos de Zinco/análise , Isótopos de Zinco/metabolismo , Isótopos de Zinco/farmacologia
9.
Proc Natl Acad Sci U S A ; 117(41): 25751-25758, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989140

RESUMO

Although the F-specific ssRNA phage MS2 has long had paradigm status, little is known about penetration of the genomic RNA (gRNA) into the cell. The phage initially binds to the F-pilus using its maturation protein (Mat), and then the Mat-bound gRNA is released from the viral capsid and somehow crosses the bacterial envelope into the cytoplasm. To address the mechanics of this process, we fluorescently labeled the ssRNA phage MS2 to track F-pilus dynamics during infection. We discovered that ssRNA phage infection triggers the release of F-pili from host cells, and that higher multiplicity of infection (MOI) correlates with detachment of longer F-pili. We also report that entry of gRNA into the host cytoplasm requires the F-plasmid-encoded coupling protein, TraD, which is located at the cytoplasmic entrance of the F-encoded type IV secretion system (T4SS). However, TraD is not essential for pilus detachment, indicating that detachment is triggered by an early step of MS2 engagement with the F-pilus or T4SS. We propose a multistep model in which the ssRNA phage binds to the F-pilus and through pilus retraction engages with the distal end of the T4SS channel at the cell surface. Continued pilus retraction pulls the Mat-gRNA complex out of the virion into the T4SS channel, causing a torsional stress that breaks the mature F-pilus at the cell surface. We propose that phage-induced disruptions of F-pilus dynamics provides a selective advantage for infecting phages and thus may be prevalent among the phages specific for retractile pili.


Assuntos
Escherichia coli/virologia , Fímbrias Bacterianas/virologia , Levivirus/fisiologia , Vírus de RNA/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Levivirus/genética , Vírus de RNA/genética , RNA Viral/genética , RNA Viral/metabolismo , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo
10.
J Sci Food Agric ; 103(2): 560-568, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36053826

RESUMO

BACKGROUND: Maintaining or improving soil chemical quality is critical for sustainable agricultural productivity and environmental safeguards. Organic fertilizer application, a common agricultural practice in banana cultivation, is often associated with greater microbial biomass and activity, which are linked to improvements in soil chemical quality. However, the effect of the duration of organic fertilizer application on soil chemical quality and whether it is microbially driven still needs to be investigated. We collected soil samples from banana plantations consistently applying organic fertilizers for 1 (Y1), 4 (Y4), 7 (Y7) and 10 (Y10) years. Soil chemical quality is expressed as total data set (TDS) and minimum data set (MDS) based on chemical indicators, and soil microorganisms are characterized by phospholipid fatty acid (PLFA). RESULTS: Based on TDS and MDS, the soil chemical quality indices in Y7 and Y10 treatments were significantly higher than that in Y1 and Y4 treatments. Soil total PLFA concentrations and the proportional abundance of fungi and arbuscular mycorrhizal fungi increased with prolonged banana cultivation. Total PLFA concentrations were significantly positive correlation with the soil chemical quality index. Soil gram-positive bacteria (G+), bacteria, protozoa and ratio of G+ to gram-negative bacteria (G-) were major drivers of soil chemical quality. CONCLUSION: The organic fertilizer application can significantly improve soil chemical quality, which is regulated by soil bacteria. Regular application of organic fertilizers is important in promoting soil quality and soil biological properties need to be incorporated into the assessment of soil health in banana plantations. © 2022 Society of Chemical Industry.


Assuntos
Fertilizantes , Musa , Bactérias , Ácidos Graxos , Fertilizantes/análise , Fungos , Fosfolipídeos , Solo/química , Microbiologia do Solo
11.
Mol Microbiol ; 115(3): 436-452, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33326642

RESUMO

Bacterial type IV secretion systems (T4SSs) are a functionally diverse translocation superfamily. They consist mainly of two large subfamilies: (i) conjugation systems that mediate interbacterial DNA transfer and (ii) effector translocators that deliver effector macromolecules into prokaryotic or eukaryotic cells. A few other T4SSs export DNA or proteins to the milieu, or import exogenous DNA. The T4SSs are defined by 6 or 12 conserved "core" subunits that respectively elaborate "minimized" systems in Gram-positive or -negative bacteria. However, many "expanded" T4SSs are built from "core" subunits plus numerous others that are system-specific, which presumptively broadens functional capabilities. Recently, there has been exciting progress in defining T4SS assembly pathways and architectures using a combination of fluorescence and cryoelectron microscopy. This review will highlight advances in our knowledge of structure-function relationships for model Gram-negative bacterial T4SSs, including "minimized" systems resembling the Agrobacterium tumefaciens VirB/VirD4 T4SS and "expanded" systems represented by the Helicobacter pylori Cag, Legionella pneumophila Dot/Icm, and F plasmid-encoded Tra T4SSs. Detailed studies of these model systems are generating new insights, some at atomic resolution, to long-standing questions concerning mechanisms of substrate recruitment, T4SS channel architecture, conjugative pilus assembly, and machine adaptations contributing to T4SS functional versatility.


Assuntos
Conjugação Genética , Fímbrias Bacterianas/fisiologia , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/fisiologia , Sistemas de Translocação de Proteínas/metabolismo , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/fisiologia , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/fisiologia , Motivos de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Microscopia Crioeletrônica , Bactérias Gram-Negativas/ultraestrutura , Infecções por Bactérias Gram-Negativas/microbiologia , Helicobacter pylori/química , Helicobacter pylori/fisiologia , Humanos , Legionella pneumophila/química , Legionella pneumophila/fisiologia , Simulação de Acoplamento Molecular , Sistemas de Translocação de Proteínas/química , Sistemas de Translocação de Proteínas/ultraestrutura , Relação Estrutura-Atividade , Sistemas de Secreção Tipo IV/ultraestrutura
12.
Plasmid ; 123-124: 102652, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36228885

RESUMO

Two phylogenetically distantly-related IncF plasmids, F and pED208, serve as important models for mechanistic and structural studies of F-like type IV secretion systems (T4SSFs) and F pili. Here, we present the pED208 sequence and compare it to F and pUMNF18, the closest match to pED208 in the NCBI database. As expected, gene content of the three cargo regions varies extensively, although the maintenance/leading regions (MLRs) and transfer (Tra) regions also carry novel genes or motifs with predicted modulatory effects on plasmid stability, dissemination and host range. By use of a Cre recombinase assay for translocation (CRAfT), we recently reported that pED208-carrying donors translocate several products of the MLR (ParA, ParB1, ParB2, SSB, PsiB, PsiA) intercellularly through the T4SSF. Here, we extend these findings by reporting that pED208-carrying donors translocate 10 additional MLR proteins during conjugation. In contrast, two F plasmid-encoded toxin components of toxin-antitoxin (TA) modules, CcdB and SrnB, were not translocated at detectable levels through the T4SSF. Remarkably, most or all of the pED208-encoded MLR proteins and CcdB and SrnB were translocated through heterologous T4SSs encoded by IncN and IncP plasmids pKM101 and RP4, respectively. Together, our sequence analyses underscore the genomic diversity of the F plasmid superfamily, and our experimental data demonstrate the promiscuous nature of conjugation machines for protein translocation. Our findings raise intriguing questions about the nature of T4SS translocation signals and of the biological and evolutionary consequences of conjugative protein transfer.


Assuntos
Escherichia coli , Sistemas de Secreção Tipo IV , Sistemas de Secreção Tipo IV/genética , Plasmídeos/genética , Escherichia coli/genética , Fator F , Análise de Sequência , Conjugação Genética , Proteínas de Bactérias/metabolismo
13.
Proc Natl Acad Sci U S A ; 116(28): 14222-14227, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31239340

RESUMO

Bacterial conjugation systems are members of the large type IV secretion system (T4SS) superfamily. Conjugative transfer of F plasmids residing in the Enterobacteriaceae was first reported in the 1940s, yet the architecture of F plasmid-encoded transfer channel and its physical relationship with the F pilus remain unknown. We visualized F-encoded structures in the native bacterial cell envelope by in situ cryoelectron tomography (CryoET). Remarkably, F plasmids encode four distinct structures, not just the translocation channel or channel-pilus complex predicted by prevailing models. The F1 structure is composed of distinct outer and inner membrane complexes and a connecting cylinder that together house the envelope-spanning translocation channel. The F2 structure is essentially the F1 complex with the F pilus attached at the outer membrane (OM). Remarkably, the F3 structure consists of the F pilus attached to a thin, cell envelope-spanning stalk, whereas the F4 structure consists of the pilus docked to the OM without an associated periplasmic density. The traffic ATPase TraC is configured as a hexamer of dimers at the cytoplasmic faces of the F1 and F2 structures, where it respectively regulates substrate transfer and F pilus biogenesis. Together, our findings present architectural renderings of the DNA conjugation or "mating" channel, the channel-pilus connection, and unprecedented pilus basal structures. These structural snapshots support a model for biogenesis of the F transfer system and allow for detailed comparisons with other structurally characterized T4SSs.


Assuntos
Membrana Celular/ultraestrutura , Escherichia coli/ultraestrutura , Fator F/ultraestrutura , Fímbrias Bacterianas/ultraestrutura , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Membrana Celular/genética , Conjugação Genética/genética , Microscopia Crioeletrônica , Citoplasma/genética , Citoplasma/ultraestrutura , DNA Bacteriano/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Fator F/genética , Fímbrias Bacterianas/genética , Sistemas de Secreção Tipo IV/genética
14.
J Environ Manage ; 324: 116336, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36162317

RESUMO

Particulate cadmium (Cd) and zinc (Zn) are ubiquitous in agricultural soils of Pb-Zn mining regions. Water management serves as an important agronomic measure altering the bioavailability of Zn and Cd in soils, but how this affects particulate Cd and Zn and the underlying mechanisms remain largely unknown. Microcosm soil incubation combined with spectroscopic and microscopic characterization was conducted. During a two-year-long incubation period we observed that the concentrations of soil CaCl2-extractable Zn and Cd increased 3-10 times in sphalerite-spiked soils and 1-2 times in smithsonite-spiked soils under periodic flooding conditions due to the long-term dissolution of sphalerite (SP) and smithsonite (SM). However, the increase in the concentration of CaCl2-extractable metals (Zn: from 0.607 mg kg-1 to 1.051 mg kg-1 and Cd: from 0.047 mg kg-1 to 0.119 mg kg-1) was found only in SP-treatment under continuous flooding conditions, indicating the mobilization of metals. Ultrafiltration analysis shows that the nanoparticulate fraction of Zn and Cd in soil pore water increased 5 and 7 times in SP-treatments under continuous flooding conditions, suggesting the increment of metal pools in soil pore water. HRTEM-EDX-SAED further reveals that these nanoparticles were mainly crystalline ZnS and Zn-bearing sulfate nanoparticles in the SP-treatment and amorphous ZnCO3 and ZnS nanoparticles in the SM-treatment. Therefore, the formation of the stable crystalline Zn-bearing nanoparticles in the SP-treatment may explain the elevation of the concentration of soil CaCl2-extractable Zn and Cd under continuous flooding. The potential mobility of particulate metals should therefore be expected in scenarios of continuous flooding such as paddy soils and wetland systems.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/química , Solo/química , Zinco/química , Poluentes do Solo/análise , Água/análise , Cloreto de Cálcio , Ácidos , Abastecimento de Água , Metais Pesados/análise
15.
Mol Microbiol ; 114(2): 214-229, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32239779

RESUMO

A large subfamily of the type IV secretion systems (T4SSs), termed the conjugation systems, transmit mobile genetic elements (MGEs) among many bacterial species. In the initiating steps of conjugative transfer, DNA transfer and replication (Dtr) proteins assemble at the origin-of-transfer (oriT) sequence as the relaxosome, which nicks the DNA strand destined for transfer and couples the nicked substrate with the VirD4-like substrate receptor. Here, we defined contributions of the Dtr protein TraK, a predicted member of the Ribbon-Helix-Helix (RHH) family of DNA-binding proteins, to transfer of DNA and protein substrates through the pKM101-encoded T4SS. Using a combination of cross-linking/affinity pull-downs and two-hybrid assays, we determined that TraK self-associates as a probable tetramer and also forms heteromeric contacts with pKM101-encoded TraI relaxase, VirD4-like TraJ receptor, and VirB11-like and VirB4-like ATPases, TraG and TraB, respectively. TraK also promotes stable TraJ-TraB complex formation and stimulates binding of TraI with TraB. Finally, TraK is required for or strongly stimulates the transfer of cognate (pKM101, TraI relaxase) and noncognate (RSF1010, MobA relaxase) substrates. We propose that TraK functions not only to nucleate pKM101 relaxosome assembly, but also to activate the TrapKM101 T4SS via interactions with the ATPase energy center positioned at the channel entrance.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Nucleoproteínas/metabolismo , Proteínas Periplásmicas/metabolismo , Sistemas de Secreção Tipo IV/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/fisiologia , Proteínas de Bactérias/metabolismo , Conjugação Genética/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Proteínas de Membrana/metabolismo , Nucleoproteínas/fisiologia , Proteínas Periplásmicas/fisiologia , Plasmídeos/genética
16.
Environ Microbiol ; 23(11): 6587-6602, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34672071

RESUMO

Hotspots of N2 O emissions are generated from legume residues during decomposition. Arbuscular mycorrhizal fungi (AMF) from co-cultivated intercropped plants may proliferate into the microsites and interact with soil microbes to reduce N2 O emissions. Yet, the mechanisms by which or how mycorrhizal hyphae affect nitrifiers and denitrifiers in the legume residues remain ambiguous. Here, a split-microcosm experiment was conducted to assess hyphae of Rhizophagus aggregatus from neighbouring maize on overall N2 O emissions from stubbles of nodulated or non-nodulated soybean. Soil microbes from fields intercropped with maize/soybean amended with fertilizer nitrogen (SS-N1) or unamended (SS-N0) were added to the soybean chamber only. AMF hyphae consistently reduced N2 O emissions by 20.8%-61.5%. Generally, AMF hyphae promoted the abundance of N2 O-consuming (nosZ-type) denitrifiers and altered their community composition. The effects were partly associated with increasing MBC and DOC. By contrast, AMF reduced the abundance of nirK-type denitrifiers in the nodulated SS-N0 treatment only and that of AOB in the non-nodulated SS-N1 treatment. Taken together, our results show that AMF reduced N2 O emissions from soybean stubbles, mainly through the promotion of N2 O-consuming denitrifiers. This holds promise for mitigating N2 O emissions by manipulating the efficacious AMF and their associated microbes in cereal/legume intercropping systems.


Assuntos
Fabaceae , Micorrizas , Micorrizas/química , Óxido Nitroso , Solo/química , Microbiologia do Solo , Glycine max
17.
BMC Plant Biol ; 21(1): 498, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34715790

RESUMO

BACKGROUND: Effects on maize were assessed of dual inoculation with arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) isolated from other plant species. METHODS: Suspensions of DSE isolated from Stipa krylovii were prepared at different densities (2, 4, and 8 × 105 CFU mL- 1) and inoculated separately (AMF or DSE) or together (AMF + DSE), to explore their effects on maize growth. RESULTS: Inoculation with AMF or medium and high densities of DSE and combined inoculation (AMF + DSE) increased plant above-ground growth and altered root morphology. Differences in plant growth were attributable to differences in DSE density, with negative DSE inoculation responsiveness at low density. AMF promoted plant above-ground growth more than DSE and the high density of DSE promoted root development more than AMF. Combined inoculation might lead to synergistic growth effects on maize at low density of DSE and competitive effects at medium and high DSE densities. CONCLUSIONS: AMF and DSE co-colonized maize roots and they had positive effects on the host plants depending on DSE density. These findings indicate the optimum maize growth-promoting combination of AMF and DSE density and provide a foundation for further exploration of potentially synergistic mechanisms between AMF and DSE in physiological and ecological effects on host plants.


Assuntos
Endófitos/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Simbiose/fisiologia , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia
18.
Glob Chang Biol ; 27(1): 202-214, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32920909

RESUMO

Global vegetated coastal habitats (VCHs) represent a large sink for organic carbon (OC) stored within their soils. The regional patterns and causes of spatial variation, however, remain uncertain. The sparsity and regional bias of studies on soil OC stocks from Chinese VCHs have limited the reliable estimation of their capacity as regional and global OC sinks. Here, we use field and published data from 262 sampled soil cores and 181 surface soils to report estimates of soil OC stocks, burial rates and losses of VCHs in China. We find that Chinese mangrove, salt marsh and seagrass habitats have relatively low OC stocks, storing 6.3 ± 0.6, 7.5 ± 0.6, and 1.6 ± 0.6 Tg C (±95% confidence interval) in the top meter of the soil profile with burial rates of 44 ± 17, 159 ± 57, and 6 ± 45 Gg C/year, respectively. The variability in the soil OC stocks is linked to biogeographic factors but is mostly impacted by sedimentary processes and anthropic activities. All habitats have experienced significant losses, resulting in estimated emissions of 94.2-395.4 Tg CO2 e (carbon dioxide equivalent) over the past 70 years. Reversing this trend through conservation and restoration measures has, therefore, great potential in contributing to the mitigation of climate change while providing additional benefits. This assessment, on a national scale from highly sedimentary environments under intensive anthropogenic pressures, provides important insights into blue carbon sink mechanism and sequestration capacities, thus contributing to the synchronous progression of global blue carbon management.


Assuntos
Carbono , Solo , Sequestro de Carbono , China , Ecossistema
19.
Environ Sci Technol ; 55(3): 1769-1778, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33494598

RESUMO

The selective sorption of dissolved organic matter (DOM) on minerals is a widespread geochemical process in the natural environment. Recent studies have explored the influence of this process on the molecular fractionation of DOM at water-mineral interfaces. However, it remains unclear how molecular fractionation affects the photochemistry of DOM. Here, we demonstrate that the adsorptive fractionation of DOM on ferrihydrite greatly reduces its photoproduction of reactive oxygen species (ROS) including 1O2, O2•-, and •OH normalized to organic carbon (ROSOC). The ROSOC for 1O2, O2•-, and •OH were positively correlated with the abundances of polyphenols and oxygenated polycyclic aromatics, which were also observed using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analysis to be preferentially sequestered by ferrihydrite. The molecules that preferentially remained in the solution after adsorption displayed low levels of ROSOC. The molecular fractionation of DOM induced by adsorption on ferrihydrite therefore influenced the molecular components and also significantly reduced the photoreactive fractions of DOM in waters. These results are very important in promoting our understanding of the effects of molecular fractionation on the biogeochemical features, behaviors, and implications of DOM in the environment.


Assuntos
Fracionamento Químico , Compostos Férricos , Adsorção , Minerais
20.
Environ Sci Technol ; 55(8): 4648-4657, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33761242

RESUMO

Biodegradable mulch films have been developed as a suitable alternative to conventional nondegradable polyethylene films. However, the key factors controlling the degradation speed of biodegradable mulch films in soils remain unclear. Here, we linked changes in the soil microbiome with the degradation rate of a promising biodegradable material poly(butylene adipate-co-terephthalate) (PBAT) in four soil types, a lou soil (LS), a fluvo-aquic soil (CS), a black soil (BS), and a red soil (RS), equivalent to Inceptisols (the first two soils), Mollisols, and Ultisols, using soil microcosms. The PBAT degradation rate differed with the soil type, with PBAT mineralization levels of 16, 9, 0.3, and 0.9% in LS, CS, BS, and RS, respectively, after 120 days. Metagenomic analysis showed that the microbial community in LS was more responsive to PBAT than the other three soils. PBAT hydrolase genes were significantly enriched in LS but were not significantly stimulated by PBAT in CS, BS, or RS. Several members of Proteobacteria were identified as novel potential degraders, and their enrichment extent was significantly positively correlated with PBAT degradation capacity. Overall, our results suggest that soil environments harbored a range of PBAT-degrading bacteria and the enrichment of potential degraders drives the fate of PBAT in the soils.


Assuntos
Microbiota , Solo , Adipatos , Alcenos , Ácidos Ftálicos , Poliésteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA