Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 159(1)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37409706

RESUMO

An efficient implementation for approximate inclusion of the three-body operator arising in transcorrelated methods via exclusion of explicit three-body components (xTC) is presented and tested against results in the "HEAT" benchmark set [Tajti et al., J. Chem. Phys. 121, 011599 (2004)]. Using relatively modest basis sets and computationally simple methods, total, atomization, and formation energies within near-chemical accuracy from HEAT results were obtained. The xTC ansatz reduces the nominal scaling of the three-body part of transcorrelation by two orders of magnitude to O(N5) and can readily be used with almost any quantum chemical correlation method.

2.
J Chem Phys ; 158(21)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37259997

RESUMO

We demonstrate the accuracy of ground-state energies of the transcorrelated Hamiltonian, employing sophisticated Jastrow factors obtained from variational Monte Carlo, together with the coupled cluster and distinguishable cluster methods at the level of singles and doubles excitations. Our results show that already with the cc-pVTZ basis, the transcorrelated distinguishable cluster method gets close to the complete basis limit and near full configuration interaction quality values for relative energies of over thirty atoms and molecules. To gauge the performance in different correlation regimes, we also investigate the breaking of the nitrogen molecule with transcorrelated coupled cluster methods. Numerical evidence is presented to further justify an efficient way to incorporate the major effects coming from the three-body integrals without explicitly introducing them into the amplitude equations.

3.
J Chem Phys ; 156(15): 154107, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35459290

RESUMO

We present an embedded fragment approach for high-level quantum chemical calculations on local features in periodic systems. The fragment is defined as a set of localized orbitals (occupied and virtual) corresponding to a converged periodic Hartree-Fock solution. These orbitals serve as the basis for the in-fragment post-Hartree-Fock treatment. The embedding field for the fragment, consisting of the Coulomb and exchange potential from the rest of the crystal, is included in the fragment's one-electron Hamiltonian. As an application of the embedded fragment approach, we investigate the performance of full configuration interaction quantum Monte Carlo (FCIQMC) with the adaptive shift. As the orbital choice, we use the natural orbitals from the distinguishable cluster method with singles and doubles. FCIQMC is a stochastic approximation to the full CI method and can be routinely applied to much larger active spaces than the latter. This makes this method especially attractive in the context of open shell defects in crystals, where fragments of adequate size can be rather large. As a test case, we consider dissociation of a fluorine atom from a fluorographane surface. This process poses a challenge for high-level electronic structure models as both the static and dynamic correlations are essential here. Furthermore, the active space for an adequate fragment (32 electrons in 173 orbitals) is already quite large even for FCIQMC. Despite this, FCIQMC delivers accurate dissociation and total energies.

4.
J Chem Theory Comput ; 19(6): 1734-1743, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36912635

RESUMO

We present the theory of a density matrix renormalization group (DMRG) algorithm which can solve for both the ground and excited states of non-Hermitian transcorrelated Hamiltonians and show applications in molecular systems. Transcorrelation (TC) accelerates the basis set convergence rate by including known physics (such as, but not limited to, the electron-electron cusp) in the Jastrow factor used for the similarity transformation. It also improves the accuracy of approximate methods such as coupled cluster singles and doubles (CCSD) as shown by recent studies. However, the non-Hermiticity of the TC Hamiltonians poses challenges for variational methods like DMRG. Imaginary-time evolution on the matrix product state (MPS) in the DMRG framework has been proposed to circumvent this problem, but this is currently limited to treating the ground state and has lower efficiency than the time-independent DMRG (TI-DMRG) due to the need to eliminate Trotter errors. In this work, we show that with minimal changes to the existing TI-DMRG algorithm, namely, replacing the original Davidson solver with the general Davidson solver to solve the non-Hermitian effective Hamiltonians at each site for a few low-lying right eigenstates, and following the rest of the original DMRG recipe, one can find the ground and excited states with improved efficiency compared to the original DMRG when extrapolating to the infinite bond dimension limit in the same basis set. An accelerated basis set convergence rate is also observed, as expected, within the TC framework.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA