Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.814
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 56(8): 1809-1824.e10, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499656

RESUMO

Complement factor H (CFH) negatively regulates consumption of complement component 3 (C3), thereby restricting complement activation. Genetic variants in CFH predispose to chronic inflammatory disease. Here, we examined the impact of CFH on atherosclerosis development. In a mouse model of atherosclerosis, CFH deficiency limited plaque necrosis in a C3-dependent manner. Deletion of CFH in monocyte-derived inflammatory macrophages propagated uncontrolled cell-autonomous C3 consumption without downstream C5 activation and heightened efferocytotic capacity. Among leukocytes, Cfh expression was restricted to monocytes and macrophages, increased during inflammation, and coincided with the accumulation of intracellular C3. Macrophage-derived CFH was sufficient to dampen resolution of inflammation, and hematopoietic deletion of CFH in atherosclerosis-prone mice promoted lesional efferocytosis and reduced plaque size. Furthermore, we identified monocyte-derived inflammatory macrophages expressing C3 and CFH in human atherosclerotic plaques. Our findings reveal a regulatory axis wherein CFH controls intracellular C3 levels of macrophages in a cell-autonomous manner, evidencing the importance of on-site complement regulation in the pathogenesis of inflammatory diseases.


Assuntos
Aterosclerose , Complemento C3 , Animais , Humanos , Camundongos , Aterosclerose/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Inflamação , Macrófagos/metabolismo
2.
Nat Immunol ; 20(4): 514, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30862955

RESUMO

In the version of this article initially published, the first affiliation lacked 'MRC'; the correct name of the institution is 'MRC Weatherall Institute of Molecular Medicine'. Two designations (SP110Y and ST110H) were incorrect in the legend to Fig. 6f,h,i. The correct text is as follows: for panel f, "...loaded with either the CdtB(105-125)SP110Y (DRB4*SP110Y) or the CdtB(105-125)ST110H (DRB4*ST110H) peptide variants..."; for panel h, "...decorated by the DRB4*SP110Y tetramer (lower-right quadrant), the DRB4*ST110H (upper-left quadrant)..."; and for panel i, "...stained ex vivo with DRB4*SP110Y, DRB4*ST110H...". In Fig. 8e, the final six residues (LTEAFF) of the sequence in the far right column of the third row of the table were missing; the correct sequence is 'CASSYRRTPPLTEAFF'. In the legend to Fig. 8d, a designation (HLyE) was incorrect; the correct text is as follows: "(HlyE?)." Portions of the Acknowledgements section were incorrect; the correct text is as follows: "This work was supported by the UK Medical Research Council (MRC) (MR/K021222/1) (G.N., M.A.G., A.S., V.C., A.J.P.),...the Oxford Biomedical Research Centre (A.J.P., V.C.),...and core funding from the Singapore Immunology Network (SIgN) (E.W.N.) and the SIgN immunomonitoring platform (E.W.N.)." Finally, a parenthetical element was phrased incorrectly in the final paragraph of the Methods subsection "T cell cloning and live fluorescence barcoding"; the correct phrasing is as follows: "...(which in all cases included HlyE, CdtB, Ty21a, Quailes, NVGH308, and LT2 strains and in volunteers T5 and T6 included PhoN)...". Also, in Figs. 3c and 4a, the right outlines of the plots were not visible; in the legend to Fig. 3, panel letter 'f' was not bold; and in Fig. 8f, 'ND' should be aligned directly beneath DRB4 in the key and 'ND' should be removed from the diagram at right, and the legend should be revised accordingly as follows: "...colors indicate the HLA class II restriction (gray indicates clones for which restriction was not determined (ND)). Clonotypes are grouped on the basis of pathogen selectivity (continuous line), protein specificity (dashed line) and epitope specificity; for ten HlyE-specific clones (pixilated squares), the epitope specificity was not determined...". The errors have been corrected in the HTML and PDF versions of the article.

3.
Nat Immunol ; 19(7): 742-754, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29925993

RESUMO

To tackle the complexity of cross-reactive and pathogen-specific T cell responses against related Salmonella serovars, we used mass cytometry, unbiased single-cell cloning, live fluorescence barcoding, and T cell-receptor sequencing to reconstruct the Salmonella-specific repertoire of circulating effector CD4+ T cells, isolated from volunteers challenged with Salmonella enterica serovar Typhi (S. Typhi) or Salmonella Paratyphi A (S. Paratyphi). We describe the expansion of cross-reactive responses against distantly related Salmonella serovars and of clonotypes recognizing immunodominant antigens uniquely expressed by S. Typhi or S. Paratyphi A. In addition, single-amino acid variations in two immunodominant proteins, CdtB and PhoN, lead to the accumulation of T cells that do not cross-react against the different serovars, thus demonstrating how minor sequence variations in a complex microorganism shape the pathogen-specific T cell repertoire. Our results identify immune-dominant, serovar-specific, and cross-reactive T cell antigens, which should aid in the design of T cell-vaccination strategies against Salmonella.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Salmonella paratyphi A/imunologia , Salmonella typhi/imunologia , ADP-Ribosil Ciclase 1/análise , Adulto , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Linfócitos T CD4-Positivos/química , Células Clonais , Humanos , Fenótipo , Receptores CCR7/análise , Febre Tifoide/imunologia
4.
Nature ; 626(7999): 542-548, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109940

RESUMO

The success of colloidal semiconductor nanocrystals (NCs) in science and optoelectronics is inextricable from their surfaces. The functionalization of lead halide perovskite NCs1-5 poses a formidable challenge because of their structural lability, unlike the well-established covalent ligand capping of conventional semiconductor NCs6,7. We posited that the vast and facile molecular engineering of phospholipids as zwitterionic surfactants can deliver highly customized surface chemistries for metal halide NCs. Molecular dynamics simulations implied that ligand-NC surface affinity is primarily governed by the structure of the zwitterionic head group, particularly by the geometric fitness of the anionic and cationic moieties into the surface lattice sites, as corroborated by the nuclear magnetic resonance and Fourier-transform infrared spectroscopy data. Lattice-matched primary-ammonium phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites (FAPbBr3 and MAPbBr3 (FA, formamidinium; MA, methylammonium)) and lead-free metal halide NCs. The molecular structure of the organic ligand tail governs the long-term colloidal stability and compatibility with solvents of diverse polarity, from hydrocarbons to acetone and alcohols. These NCs exhibit photoluminescence quantum yield of more than 96% in solution and solids and minimal photoluminescence intermittency at the single particle level with an average ON fraction as high as 94%, as well as bright and high-purity (about 95%) single-photon emission.


Assuntos
Desenho de Fármacos , Ligantes , Nanopartículas Metálicas , Pontos Quânticos , Acetona/química , Álcoois/química , Ânions , Compostos de Cálcio/química , Cátions , Coloides/química , Chumbo , Medições Luminescentes , Espectroscopia de Ressonância Magnética , Nanopartículas Metálicas/química , Simulação de Dinâmica Molecular , Óxidos/química , Fosfolipídeos/química , Pontos Quânticos/química , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio/química
5.
Nat Immunol ; 16(5): 534-43, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25848865

RESUMO

Mature B cells express immunoglobulin M (IgM)- and IgD-isotype B cell antigen receptors, but the importance of IgD for B cell function has been unclear. By using a cellular in vitro system and corresponding mouse models, we found that antigens with low valence activated IgM receptors but failed to trigger IgD signaling, whereas polyvalent antigens activated both receptor types. Investigations of the molecular mechanism showed that deletion of the IgD-specific hinge region rendered IgD responsive to monovalent antigen, whereas transferring the hinge to IgM resulted in responsiveness only to polyvalent antigen. Our data suggest that the increased IgD/IgM ratio on conventional B-2 cells is important for preferential immune responses to antigens in immune complexes, and that the increased IgM expression on B-1 cells is essential for B-1 cell homeostasis and function.


Assuntos
Linfócitos B/imunologia , Imunoglobulina D/imunologia , Imunoglobulina M/imunologia , Animais , Complexo Antígeno-Anticorpo/imunologia , Antígenos/imunologia , Sítios de Ligação de Anticorpos/imunologia , Sinalização do Cálcio/genética , Diferenciação Celular , Linhagem Celular , Éxons Codificadores da Região de Dobradiça/genética , Homeostase/genética , Imunidade Humoral/genética , Imunoglobulina D/genética , Imunoglobulina M/genética , Camundongos , Camundongos Knockout , Engenharia de Proteínas , Deleção de Sequência/genética
6.
Nature ; 599(7886): 684-691, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34789882

RESUMO

The three-dimensional (3D) structure of chromatin is intrinsically associated with gene regulation and cell function1-3. Methods based on chromatin conformation capture have mapped chromatin structures in neuronal systems such as in vitro differentiated neurons, neurons isolated through fluorescence-activated cell sorting from cortical tissues pooled from different animals and from dissociated whole hippocampi4-6. However, changes in chromatin organization captured by imaging, such as the relocation of Bdnf away from the nuclear periphery after activation7, are invisible with such approaches8. Here we developed immunoGAM, an extension of genome architecture mapping (GAM)2,9, to map 3D chromatin topology genome-wide in specific brain cell types, without tissue disruption, from single animals. GAM is a ligation-free technology that maps genome topology by sequencing the DNA content from thin (about 220 nm) nuclear cryosections. Chromatin interactions are identified from the increased probability of co-segregation of contacting loci across a collection of nuclear slices. ImmunoGAM expands the scope of GAM to enable the selection of specific cell types using low cell numbers (approximately 1,000 cells) within a complex tissue and avoids tissue dissociation2,10. We report cell-type specialized 3D chromatin structures at multiple genomic scales that relate to patterns of gene expression. We discover extensive 'melting' of long genes when they are highly expressed and/or have high chromatin accessibility. The contacts most specific of neuron subtypes contain genes associated with specialized processes, such as addiction and synaptic plasticity, which harbour putative binding sites for neuronal transcription factors within accessible chromatin regions. Moreover, sensory receptor genes are preferentially found in heterochromatic compartments in brain cells, which establish strong contacts across tens of megabases. Our results demonstrate that highly specific chromatin conformations in brain cells are tightly related to gene regulation mechanisms and specialized functions.


Assuntos
Encéfalo/citologia , Células/classificação , Montagem e Desmontagem da Cromatina , Cromatina/química , Cromatina/genética , Genes , Conformação Molecular , Animais , Sítios de Ligação , Células/metabolismo , Cromatina/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Família Multigênica/genética , Neurônios/classificação , Neurônios/metabolismo , Desnaturação de Ácido Nucleico , Fatores de Transcrição/metabolismo
7.
Nature ; 597(7874): 92-96, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34433968

RESUMO

Atherosclerotic cardiovascular disease causes heart attacks and strokes, which are the leading causes of mortality worldwide1. The formation of atherosclerotic plaques is initiated when low-density lipoproteins bind to heparan-sulfate proteoglycans (HSPGs)2 and become trapped in the subendothelial space of large and medium size arteries, which leads to chronic inflammation and remodelling of the artery wall2. A proliferation-inducing ligand (APRIL) is a cytokine that binds to HSPGs3, but the physiology of this interaction is largely unknown. Here we show that genetic ablation or antibody-mediated depletion of APRIL aggravates atherosclerosis in mice. Mechanistically, we demonstrate that APRIL confers atheroprotection by binding to heparan sulfate chains of heparan-sulfate proteoglycan 2 (HSPG2), which limits the retention of low-density lipoproteins, accumulation of macrophages and formation of necrotic cores. Indeed, antibody-mediated depletion of APRIL in mice expressing heparan sulfate-deficient HSPG2 had no effect on the development of atherosclerosis. Treatment with a specific anti-APRIL antibody that promotes the binding of APRIL to HSPGs reduced experimental atherosclerosis. Furthermore, the serum levels of a form of human APRIL protein that binds to HSPGs, which we termed non-canonical APRIL (nc-APRIL), are associated independently of traditional risk factors with long-term cardiovascular mortality in patients with atherosclerosis. Our data reveal properties of APRIL that have broad pathophysiological implications for vascular homeostasis.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Proteoglicanas de Heparan Sulfato/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Antígeno de Maturação de Linfócitos B/metabolismo , Sítios de Ligação , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/mortalidade , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/sangue , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/deficiência
8.
Nat Methods ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110637

RESUMO

Cryo-focused ion beam milling of frozen-hydrated cells and subsequent cryo-electron tomography (cryo-ET) has enabled the structural elucidation of macromolecular complexes directly inside cells. Application of the technique to multicellular organisms and tissues, however, is still limited by sample preparation. While high-pressure freezing enables the vitrification of thicker samples, it prolongs subsequent preparation due to increased thinning times and the need for extraction procedures. Additionally, thinning removes large portions of the specimen, restricting the imageable volume to the thickness of the final lamella, typically <300 nm. Here we introduce Serial Lift-Out, an enhanced lift-out technique that increases throughput and obtainable contextual information by preparing multiple sections from single transfers. We apply Serial Lift-Out to Caenorhabditis elegans L1 larvae, yielding a cryo-ET dataset sampling the worm's anterior-posterior axis, and resolve its ribosome structure to 7 Å and a subregion of the 11-protofilament microtubule to 13 Å, illustrating how Serial Lift-Out enables the study of multicellular molecular anatomy.

9.
Nat Methods ; 20(7): 1037-1047, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37336949

RESUMO

Technology for measuring 3D genome topology is increasingly important for studying gene regulation, for genome assembly and for mapping of genome rearrangements. Hi-C and other ligation-based methods have become routine but have specific biases. Here, we develop multiplex-GAM, a faster and more affordable version of genome architecture mapping (GAM), a ligation-free technique that maps chromatin contacts genome-wide. We perform a detailed comparison of multiplex-GAM and Hi-C using mouse embryonic stem cells. When examining the strongest contacts detected by either method, we find that only one-third of these are shared. The strongest contacts specifically found in GAM often involve 'active' regions, including many transcribed genes and super-enhancers, whereas in Hi-C they more often contain 'inactive' regions. Our work shows that active genomic regions are involved in extensive complex contacts that are currently underestimated in ligation-based approaches, and highlights the need for orthogonal advances in genome-wide contact mapping technologies.


Assuntos
Cromatina , Genoma , Animais , Camundongos , Cromatina/genética , Mapeamento Cromossômico/métodos , Cromossomos , Genômica/métodos
10.
Nature ; 578(7796): 621-626, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32051585

RESUMO

The mechanics of the cellular microenvironment continuously modulates cell functions such as growth, survival, apoptosis, differentiation and morphogenesis via cytoskeletal remodelling and actomyosin contractility1-3. Although all of these processes consume energy4,5, it is unknown whether and how cells adapt their metabolic activity to variable mechanical cues. Here we report that the transfer of human bronchial epithelial cells from stiff to soft substrates causes a downregulation of glycolysis via proteasomal degradation of the rate-limiting metabolic enzyme phosphofructokinase (PFK). PFK degradation is triggered by the disassembly of stress fibres, which releases the PFK-targeting E3 ubiquitin ligase tripartite motif (TRIM)-containing protein 21 (TRIM21). Transformed non-small-cell lung cancer cells, which maintain high glycolytic rates regardless of changing environmental mechanics, retain PFK expression by downregulating TRIM21, and by sequestering residual TRIM21 on a stress-fibre subset that is insensitive to substrate stiffness. Our data reveal a mechanism by which glycolysis responds to architectural features of the actomyosin cytoskeleton, thus coupling cell metabolism to the mechanical properties of the surrounding tissue. These processes enable normal cells to tune energy production in variable microenvironments, whereas the resistance of the cytoskeleton in response to mechanical cues enables the persistence of high glycolytic rates in cancer cells despite constant alterations of the tumour tissue.


Assuntos
Microambiente Celular , Citoesqueleto/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Glucose/metabolismo , Glicólise , Dureza , Actinas/metabolismo , Actomiosina/metabolismo , Animais , Brônquios/citologia , Bovinos , Diferenciação Celular , Linhagem Celular , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Fosfofrutoquinases/química , Fosfofrutoquinases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ribonucleoproteínas/metabolismo , Fibras de Estresse/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
11.
Acc Chem Res ; 57(9): 1434-1445, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38652511

RESUMO

ConspectusIn the ever-increasing renewable-energy demand scenario, developing new photovoltaic technologies is important, even in the presence of established terawatt-scale silicon technology. Emerging photovoltaic technologies play a crucial role in diversifying material flows while expanding the photovoltaic product portfolio, thus enhancing security and competitiveness within the solar industry. They also serve as a valuable backup for silicon photovoltaic, providing resilience to the overall energy infrastructure. However, the development of functional solar materials poses intricate multiobjective optimization challenges in a large multidimensional composition and parameter space, in some cases with millions of potential candidates to be explored. Solving it necessitates reproducible, user-independent laboratory work and intelligent preselection of innovative experimental methods.Materials acceleration platforms (MAPs) seamlessly integrate robotic materials synthesis and characterization with AI-driven data analysis and experimental design, positioning them as enabling technologies for the discovery and exploration of new materials. They are proposed to revolutionize materials development away from the Edisonian trial-and-error approaches to ultrashort cycles of experiments with exceptional precision, generating a reliable and highly qualitative data situation that allows training machine learning algorithms with predictive power. MAPs are designed to assist the researcher in multidimensional aspects of materials discovery, such as material synthesis, precursor preparation, sample processing and characterization, and data analysis, and are drawing escalating attention in the field of energy materials. Device acceleration platforms (DAPs), however, are designed to optimize functional films and layer stacks. Unlike MAPs, which focus on material discovery, a central aspect of DAPs is the identification and refinement of ideal processing conditions for a predetermined set of materials. Such platforms prove especially invaluable when dealing with "disordered semiconductors," which depend heavily on the processing parameters that ultimately define the functional properties and functionality of thin film layers. By facilitating the fine-tuning of processing conditions, DAPs contribute significantly to the advancement and optimization of disordered semiconductor devices, such as emerging photovoltaics.In this Account, we review the recent advancements made by our group in automated and autonomous laboratories for advanced material discovery and device optimization with a strong focus on emerging photovoltaics, such as solution-processing perovskite solar cells and organic photovoltaics. We first introduce two MAPs and two DAPs developed in-house: a microwave-assisted high-throughput synthesis platform for the discovery of organic interface materials, a multipurpose robot-based pipetting platform for the synthesis of new semiconductors and the characterization of thin film semiconductor composites, the SPINBOT system, which is a spin-coating DAP with the potential to optimize complex device architectures, and finally, AMANDA, a fully integrated and autonomously operating DAP. Notably, we underscore the utilization of a robot-based high-throughput experimentation technique to address the common optimization challenges encountered in extensive multidimensional composition and parameter spaces pertaining to organic and perovskite photovoltaics materials. Finally, we briefly propose a holistic concept and technology, a self-driven autonomous material and device acceleration platform (AMADAP) laboratory, for autonomous functional solar materials discovery and development. We hope to discover how AMADAP can be further strengthened and universalized with advancing development of hardware and software infrastructures in the future.

12.
Nature ; 566(7744): 383-387, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30760925

RESUMO

Sleep is integral to life1. Although insufficient or disrupted sleep increases the risk of multiple pathological conditions, including cardiovascular disease2, we know little about the cellular and molecular mechanisms by which sleep maintains cardiovascular health. Here we report that sleep regulates haematopoiesis and protects against atherosclerosis in mice. We show that mice subjected to sleep fragmentation produce more Ly-6Chigh monocytes, develop larger atherosclerotic lesions and produce less hypocretin-a stimulatory and wake-promoting neuropeptide-in the lateral hypothalamus. Hypocretin controls myelopoiesis by restricting the production of CSF1 by hypocretin-receptor-expressing pre-neutrophils in the bone marrow. Whereas hypocretin-null and haematopoietic hypocretin-receptor-null mice develop monocytosis and accelerated atherosclerosis, sleep-fragmented mice with either haematopoietic CSF1 deficiency or hypocretin supplementation have reduced numbers of circulating monocytes and smaller atherosclerotic lesions. Together, these results identify a neuro-immune axis that links sleep to haematopoiesis and atherosclerosis.


Assuntos
Aterosclerose/prevenção & controle , Hematopoese/fisiologia , Sono/fisiologia , Animais , Antígenos Ly/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Células da Medula Óssea/metabolismo , Feminino , Hematopoese/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Fator Estimulador de Colônias de Macrófagos/biossíntese , Fator Estimulador de Colônias de Macrófagos/deficiência , Fator Estimulador de Colônias de Macrófagos/metabolismo , Masculino , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Mielopoese/efeitos dos fármacos , Neutrófilos/metabolismo , Receptores de Orexina/deficiência , Receptores de Orexina/metabolismo , Orexinas/biossíntese , Orexinas/deficiência , Orexinas/metabolismo , Orexinas/farmacologia , Sono/efeitos dos fármacos , Privação do Sono/metabolismo , Privação do Sono/fisiopatologia , Privação do Sono/prevenção & controle
13.
Proc Natl Acad Sci U S A ; 119(29): e2207020119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858345

RESUMO

Changes in Ca2+ influx during proinflammatory stimulation modulates cellular responses, including the subsequent activation of inflammation. Whereas the involvement of Ca2+ has been widely acknowledged, little is known about the role of Na+. Ranolazine, a piperazine derivative and established antianginal drug, is known to reduce intracellular Na+ as well as Ca2+ levels. In stable coronary artery disease patients (n = 51) we observed reduced levels of high-sensitive C-reactive protein (CRP) 3 mo after the start of ranolazine treatment (n = 25) as compared to the control group. Furthermore, we found that in 3,808 acute coronary syndrome patients of the MERLIN-TIMI 36 trial, individuals treated with ranolazine (1,934 patients) showed reduced CRP values compared to placebo-treated patients. The antiinflammatory effects of sodium modulation were further confirmed in an atherosclerotic mouse model. LDL-/- mice on a high-fat diet were treated with ranolazine, resulting in a reduced atherosclerotic plaque burden, increased plaque stability, and reduced activation of the immune system. Pharmacological Na+ inhibition by ranolazine led to reduced express of adhesion molecules and proinflammatory cytokines and reduced adhesion of leukocytes to activated endothelium both in vitro and in vivo. We demonstrate that functional Na+ shuttling is required for a full cellular response to inflammation and that inhibition of Na+ influx results in an attenuated inflammatory reaction. In conclusion, we demonstrate that inhibition of Na+-Ca2+ exchange during inflammation reduces the inflammatory response in human endothelial cells in vitro, in a mouse atherosclerotic disease model, and in human patients.


Assuntos
Síndrome Coronariana Aguda , Proteína C-Reativa , Fármacos Cardiovasculares , Doença da Artéria Coronariana , Ranolazina , Bloqueadores dos Canais de Sódio , Sódio , Síndrome Coronariana Aguda/tratamento farmacológico , Animais , Proteína C-Reativa/análise , Proteína C-Reativa/metabolismo , Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/uso terapêutico , Doença da Artéria Coronariana/tratamento farmacológico , Células Endoteliais/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Camundongos , Ranolazina/farmacologia , Ranolazina/uso terapêutico , Sódio/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/uso terapêutico
14.
Curr Opin Neurol ; 37(3): 283-288, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38465699

RESUMO

PURPOSE OF REVIEW: Visual snow syndrome (VSS) is a disorder characterized by persistent visual disturbances, including the visual snow phenomenon, palinopsia, heightened perception of entoptic phenomena, impaired night vision, and photophobia. The purpose of this review is to provide an update on recent findings over the past 18 months in VSS research and to summarize the current state of treatment approaches. RECENT FINDINGS: Electrophysiological studies have revealed cortical hyperresponsivity in visual brain areas, imaging studies demonstrated microstructural and functional connectivity alterations in multiple cortical and thalamic regions and investigated glutamatergic and serotoninergic neurotransmission. These findings suggest that VSS might be a network disorder.Only few treatment studies are currently available demonstrating limited response to medication and even worsening or triggering of visual symptoms by certain antidepressants. Promising nonpharmacological treatments include mindfulness-based cognitive therapy, the use of chromatic filters, and research on visual noise adaption and neuro-optometric visual rehabilitation therapy (NORT). However, the level of evidence is still low and further research is needed including larger trials and involving objective measures of individual dysfunction. SUMMARY: Although there has been recent progress, we still have not fully understood the nature of VSS. Further research is needed on a clinical and pathophysiological level to successfully treat the condition.


Assuntos
Transtornos da Percepção , Transtornos da Visão , Humanos , Transtornos da Visão/fisiopatologia , Transtornos da Visão/terapia
15.
Small ; 20(2): e2305219, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658514

RESUMO

Materials with negative thermal expansion (NTE) attract significant research attention owing to their unique physical properties and promising applications. Although ferroelectric phase transitions leading to NTE are widely investigated, information on antiferroelectricity-induced NTE remains limited. In this study, single-crystal and polycrystalline Pb2 CoMoO6 samples are prepared at high pressure and temperature conditions. The compound crystallizes into an antiferroelectric Pnma orthorhombic double perovskite structure at room temperature owing to the opposite displacements dominated by Pb2+ ions. With increasing temperature to 400 K, a structural phase transition to cubic Fm-3m paraelectric phase occurs, accompanied by a sharp volume contraction of 0.41%. This is the first report of an antiferroelectric-to-paraelectric transition-induced NTE in Pb2 CoMoO6 . Moreover, the compound also exhibits remarkable NTE with an average volumetric coefficient of thermal expansion αV = -1.33 × 10-5 K-1 in a wide temperature range of 30-420 K. The as-prepared Pb2 CoMoO6 thus serves as a prototype material system for studying antiferroelectricity-induced NTE.

16.
Proc Biol Sci ; 291(2024): 20232934, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864326

RESUMO

Despite extensive research into the Theory of Mind abilities in non-human animals, it remains controversial whether they can attribute mental states to other individuals or whether they merely predict future behaviour based on previous behavioural cues. In the present study, we tested pet dogs (in total, N = 92) on adaptations of the 'goggles test' previously used with human infants and great apes. In both a cooperative and a competitive task, dogs were given direct experience with the properties of novel screens (one opaque, the other transparent) inserted into identical, but differently coloured, tunnels. Dogs learned and remembered the properties of the screens even when, later on, these were no longer directly visible to them. Nevertheless, they were not more likely to follow the experimenter's gaze to a target object when the experimenter could see it through the transparent screen. Further, they did not prefer to steal a forbidden treat first in a location obstructed from the experimenter's view by the opaque screen. Therefore, dogs did not show perspective-taking abilities in this study in which the only available cue to infer others' visual access consisted of the subjects' own previous experience with novel visual barriers. We conclude that the behaviour of our dogs, unlike that of infants and apes in previous studies, does not show evidence of experience-projection abilities.


Assuntos
Percepção Visual , Animais , Cães , Masculino , Feminino , Teoria da Mente , Sinais (Psicologia) , Aprendizagem , Comportamento Animal , Comportamento Cooperativo
17.
J Biol Inorg Chem ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066798

RESUMO

The elucidation of metal-dependent biological processes requires selective reagents for manipulating metal ion levels within biological solutions such as growth media or cell lysates. To this end, we immobilized a phosphine sulfide-stabilized phosphine (PSP) ligand on agarose to create a resin for the selective removal of copper from chemically complex biological media through simple filtration or centrifugation. Comprised of a conformationally preorganized phenylene-bridged backbone, the PSP-ligand binds Cu(I) with a 1:1 stoichiometry and exhibits a pH-independent Cu(I) dissociation constant in the low zeptomolar range. Neither Zn(II), Fe(II), nor Mn(II) interact with the ligand at millimolar concentrations, thus offering a much-improved selectivity towards copper over other commonly employed solid-supported chelators such as Chelex 100. As revealed by X-ray fluorescence elemental analysis, the immobilized chelator effectively removes copper from cell culture growth media and cell lysate isolated from mouse fibroblasts. In addition to preparing copper-depleted media or cell lysates for biological studies, PSP-immobilized ligands might prove equally useful for applications in radiochemistry, materials science, and environmental science.

18.
Chem Rec ; 24(2): e202300241, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37728189

RESUMO

The review summarizes our recent reports on brightly-emitting materials with varied dimensionality (3D, 2D, 0D) synthesized using "green" chemistry and exhibiting highly efficient photoluminescence (PL) originating from self-trapped exciton (STE) states. The discussion starts with 0D emitters, in particular, ternary indium-based colloidal quantum dots, continues with 2D materials, focusing on single-layer polyheptazine carbon nitride, and further evolves to 3D luminophores, the latter exemplified by lead-free double halide perovskites. The review shows the broadband STE PL to be an inherent feature of many materials produced in mild conditions by "green" chemistry, outlining PL features general for these STE emitters and differences in their photophysical properties. The review is concluded with an outlook on the challenges in the field of STE PL emission and the most promising venues for future research.

19.
Circ Res ; 130(10): 1550-1564, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35430873

RESUMO

BACKGROUND: Renal T cells contribute importantly to hypertension, but the underlying mechanism is incompletely understood. We reported that CD8Ts directly stimulate distal convoluted tubule cells (DCTs) to increase NCC (sodium chloride co-transporter) expression and salt reabsorption. However, the mechanistic basis of this pathogenic pathway that promotes hypertension remains to be elucidated. METHODS: We used mouse models of DOCA+salt (DOCA) treatment and adoptive transfer of CD8+ T cells (CD8T) from hypertensive animals to normotensive animals in in vivo studies. Co-culture of mouse DCTs and CD8Ts was used as in vitro model to test the effect of CD8T activation in promoting NCC-mediated sodium retention and to identify critical molecular players contributing to the CD8T-DCT interaction. Interferon (IFNγ)-KO mice and mice receiving renal tubule-specific knockdown of PDL1 were used to verify in vitro findings. Blood pressure was continuously monitored via radio-biotelemetry, and kidney samples were saved at experimental end points for analysis. RESULTS: We identified critical molecular players and demonstrated their roles in augmenting the CD8T-DCT interaction leading to salt-sensitive hypertension. We found that activated CD8Ts exhibit enhanced interaction with DCTs via IFN-γ-induced upregulation of MHC-I and PDL1 in DCTs, thereby stimulating higher expression of NCC in DCTs to cause excessive salt retention and progressive elevation of blood pressure. Eliminating IFN-γ or renal tubule-specific knockdown of PDL1 prevented T cell homing into the kidney, thereby attenuating hypertension in 2 different mouse models. CONCLUSIONS: Our results identified the role of activated CD8Ts in contributing to increased sodium retention in DCTS through the IFNγ-PDL1 pathway. These findings provide a new mechanism for T cell involvement in the pathogenesis of hypertension and reveal novel therapeutic targets.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Animais , Linfócitos T CD8-Positivos/metabolismo , Acetato de Desoxicorticosterona/metabolismo , Acetato de Desoxicorticosterona/farmacologia , Modelos Animais de Doenças , Hipertensão/metabolismo , Túbulos Renais Distais/metabolismo , Túbulos Renais Distais/patologia , Camundongos , Sódio/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Cloreto de Sódio na Dieta
20.
J Neurooncol ; 169(1): 187-193, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963657

RESUMO

PURPOSE: Stereotactic radiotherapy (SRT) is the predominant method for the irradiation of resection cavities after resection of brain metastases (BM). Intraoperative radiotherapy (IORT) with 50 kV x-rays is an alternative way to irradiate the resection cavity focally. We have already reported the outcome of our first 40 IORT patients treated until 2020. Since then, IORT has become the predominant cavity treatment in our center due to patients´ choice. METHODS: We retrospectively analyzed the outcomes of all patients who underwent resection of BM and IORT between 2013 and August 2023 at Augsburg University Medical Center (UKA). RESULTS: We identified 105 patients with 117 resected BM treated with 50 kV x-ray IORT. Median diameter of the resected metastases was 3.1 cm (range 1.3 - 7.0 cm). Median applied dose was 20 Gy. All patients received standardized follow-up (FU) including three-monthly MRI of the brain. Mean FU was 14 months, with a median MRI FU for patients alive of nine months. Median overall survival (OS) of all treated patients was 18.2 months (estimated 1-year OS 57.7%). The observed local control (LC) rate of the resection cavity was 90.5% (estimated 1-year LC 84.2%). Distant brain control (DC) was 61.9% (estimated 1-year DC 47.9%). Only 16.2% of all patients needed WBI in the further course of disease. The observed radio necrosis rate was 2.6%. CONCLUSION: After 117 procedures IORT still appears to be a safe and appealing way to perform cavity RT after neurosurgical resection of BM with low toxicity and excellent LC.


Assuntos
Neoplasias Encefálicas , Procedimentos Neurocirúrgicos , Humanos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Adulto , Idoso de 80 Anos ou mais , Cuidados Intraoperatórios , Seguimentos , Resultado do Tratamento , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA