RESUMO
Electro-oxidation (EO) technology demonstrates significant potential in wastewater treatment. However, the high energy consumption has become a pivotal constraint hindering its large-scale implementation. Herein, we design an EO and 4-electron oxygen reduction reaction coupled system (EO-4eORR) to replace the traditional EO and hydrogen evolution reaction (HER) coupled system (EO-HER). The theoretical cathodic potential of the electrolytic reactor is tuned from 0â V (vs. RHE) in HER to 1.23â V (vs. RHE) in 4eORR, which greatly decreases the required operation voltage of the reactor. Moreover, we demonstrate that convection can improve the mass transfer of oxygen and organic pollutants in the reaction system, leading to low cathodic polarization and high pollutant removal rate. Compared with traditional EO-HER system, the energy consumption of the EO-4eORR system under air aeration for 95 % total organic carbon (TOC) removal is greatly decreased to 2.61â kWh/kgTOC (only consider the electrolyzer energy consumption), which is superior to previously reported EO-based water treatment systems. The reported results in this study offer a new technical mode for development of highly efficient and sustainable EO-based treatment systems to remove organic pollutants in waste water.
RESUMO
Photocatalytic H2 O2 generation system based on polymer catalyst receives increasing attention in recent years; however, the insufficient charge separation efficiency and low oxygen adsorption/activation capacity severely limit their potential application. In this study, a sulfur (C=S) functionalized polymer catalyst is reported through a green water-mediated and catalyst-free multi-component reactions (MCRs) route. The sulfur functional group endows the polymer with a suitable energy band and facilitates the separation of photogenerated electron-hole pair. The reported polymer achieves a high H2 O2 production efficiency (3132â µmol g-1 h-1 ) in pure water without oxygen aeration. To demonstrate their potential in in situ wastewater treatment, a panel reactor system (20×20â cm) is constructed for large-scale production of H2 O2 , which realizes continuous degradation of emerging pollutants including antibiotics and bisphenol A under natural sunlight irradiation condition. The H2 O2 utilization efficiency of the photo-self-Fenton system using in situ generated H2 O2 is found 7.9â times higher than that of the traditional photo-Fenton system. This study offers new insights in green synthesis and design of functional polymer photocatalyst, and demonstrates the feasibility of panel reactor system for large-scale continuous H2 O2 photocatalytic production and water treatment.
RESUMO
Photocatalytic production of H2 O2 has drawn significant attention in recent years, but the yield rate of current photocatalytic systems is still unsatisfactory. Moreover, the presence of various components in actual water bodies will consume the photogenerated charges and deactivate the catalyst, severely limiting the real applications of photocatalytic H2 O2 production. Herein, a cyano-modified polymer photocatalyst is synthesized by Knoevenagel condensation with subsequent thermal polymerization. The introduction of cyano group and sulfer (S), oxygen (O) elements modulates the microstructure and energy band of the polymer catalyst, and the cyano group sites can effectively adsorb and activate O2 , realizing the generation of H2 O2 in the two-step single-electron oxygen reduction process. The reported system achieves high H2 O2 generation rate up to 1119.2 µmol g-1 h-1 in various water bodies including tap water, river water, seawater, and secondary effluent. This simple and readily available catalyst demonstrates good anti-interference performance and pH adaptability in photocatalytic H2 O2 production in actual water bodies, and its photodegradation and sterilization applications are also demonstrated. This study offers new insights in developing polymer catalysts for efficient photocatalytic production of H2 O2 in various water bodies for practical application.
RESUMO
The efficiency of persulfate-assisted advanced oxidation processes (PS-AOPs) in degrading organic pollutants is affected by the electron-donating capability of organic substances present in the water source. In this study, we systematically investigate the electron-donating capacity (EDC) difference between groundwater and surface water and demonstrate the dependence of removal efficiency on the EDC of target water by PS-AOPs with carbon nanotubes (CNTs) as a catalyst. Laboratory analyses and field experiments reveal that the CNT/PS system exhibits higher performance in organic pollutant removal in groundwater with a high concentration of phenols, compared to surface water, which is rich in quinones. We attribute this disparity to the selective electron transfer pathway induced by potential difference between PS-CNT and organic substance-CNT intermediates, which preferentially degrade organic substances with stronger electron-donating capability. This study provides valuable insights into the inherent selective removal mechanism and application scenarios of electron transfer process-dominated PS-AOPs for water treatment based on the electron-donating capacity of organic pollutants.
Assuntos
Poluentes Ambientais , Água Subterrânea , Nanotubos de Carbono , Elétrons , OxirreduçãoRESUMO
Photocatalysis technology is regarded as a promising way for environmental remediation, but rationally designing photocatalysis system with high-speed interfacial charge transfer, sufficient photoabsorption and surface reactive sites is still a challenge. In this study, anchoring single-unit-cell defective Bi2MoO6 on ultrathin g-C3N4 to form 2D/2D heterostructure system is a triple-purpose strategy for high-performance photocatalysis. The defect structure broadens photo-responsive range. The large intimate contact interface area between two monomers promotes charges carrier transfer. The enhanced specific surface area exposes more reactive sites for mass transfer and catalytic reaction. As a result, the obtained heterostructure displays excellent photocatalytic performance for ciprofloxacin (CIP) (0.0126â¯min-1), which is 3.32 and 2.93 folds higher than Bi2MoO6 and g-C3N4. In addition, this heterostructure retains high-performance for actual wastewaters treatment, and it displays strong mineralization ability. And this heterojunction also exhibits excellent photostability based on cyclic experiment. Mechanism exploration reveals that hole, superoxide radical, and hydroxyl radical are chief reactive species toward CIP degradation, thereby a Z-scheme charge carrier transfer channel is proposed. In addition, the intermediates and degradation pathways of CIP are tracked by liquid chromatography-triple quadrupole tandem mass spectrometry (LCMS/MS) and three-dimensional excitation-emission matrix fluorescence spectroscopy (3D EEMs). This study paves new way to design and construct atomic level 2D/2D heterojunction system for environment remediation.