RESUMO
More knowledge is needed regarding germline predisposition to Ewing sarcoma to inform biological investigation and clinical practice. Here, we evaluated the enrichment of pathogenic germline variants in Ewing sarcoma relative to other pediatric sarcoma subtypes, as well as patterns of inheritance of these variants. We carried out European-focused and pan-ancestry case-control analyses to screen for enrichment of pathogenic germline variants in 141 established cancer predisposition genes in 1,147 individuals with pediatric sarcoma diagnoses (226 Ewing sarcoma, 438 osteosarcoma, 180 rhabdomyosarcoma, and 303 other sarcoma) relative to identically processed cancer-free control individuals. Findings in Ewing sarcoma were validated with an additional cohort of 430 individuals, and a subset of 301 Ewing sarcoma parent-proband trios was analyzed for inheritance patterns of identified pathogenic variants. A distinct pattern of pathogenic germline variants was seen in Ewing sarcoma relative to other sarcoma subtypes. FANCC was the only gene with an enrichment signal for heterozygous pathogenic variants in the European Ewing sarcoma discovery cohort (three individuals, OR 12.6, 95% CI 3.0-43.2, p = 0.003, FDR = 0.40). This enrichment in FANCC heterozygous pathogenic variants was again observed in the European Ewing sarcoma validation cohort (three individuals, OR 7.0, 95% CI 1.7-23.6, p = 0.014), representing a broader importance of genes involved in DNA damage repair, which were also nominally enriched in individuals with Ewing sarcoma. Pathogenic variants in DNA damage repair genes were acquired through autosomal inheritance. Our study provides new insight into germline risk factors contributing to Ewing sarcoma pathogenesis.
Assuntos
Sarcoma de Ewing , Sarcoma , Criança , Dano ao DNA/genética , Predisposição Genética para Doença , Células Germinativas , Mutação em Linhagem Germinativa/genética , Humanos , Sarcoma/genética , Sarcoma de Ewing/genéticaRESUMO
Background and objective: Previous germline studies on renal cell carcinoma (RCC) have usually pooled clear and non-clear cell RCCs and have not adequately accounted for population stratification, which might have led to an inaccurate estimation of genetic risk. Here, we aim to analyze the major germline drivers of RCC risk and clinically relevant but underexplored germline variant types. Methods: We first characterized germline pathogenic variants (PVs), cryptic splice variants, and copy number variants (CNVs) in 1436 unselected RCC patients. To evaluate the enrichment of PVs in RCC, we conducted a case-control study of 1356 RCC patients ancestry matched with 16 512 cancer-free controls using approaches accounting for population stratification and histological subtypes, followed by characterization of secondary somatic events. Key findings and limitations: Clear cell RCC patients (n = 976) exhibited a significant burden of PVs in VHL compared with controls (odds ratio [OR]: 39.1, p = 4.95e-05). Non-clear cell RCC patients (n = 380) carried enrichment of PVs in FH (OR: 77.9, p = 1.55e-08) and MET (OR: 1.98e11, p = 2.07e-05). In a CHEK2-focused analysis with European participants, clear cell RCC (n = 906) harbored nominal enrichment of low-penetrance CHEK2 variants-p.Ile157Thr (OR: 1.84, p = 0.049) and p.Ser428Phe (OR: 5.20, p = 0.045), while non-clear cell RCC (n = 295) exhibited nominal enrichment of CHEK2 loss of function PVs (OR: 3.51, p = 0.033). Patients with germline PVs in FH, MET, and VHL exhibited significantly earlier age of cancer onset than patients without germline PVs (mean: 46.0 vs 60.2 yr, p < 0.0001), and more than half had secondary somatic events affecting the same gene (n = 10/15, 66.7%). Conversely, CHEK2 PV carriers exhibited a similar age of onset to patients without germline PVs (mean: 60.1 vs 60.2 yr, p = 0.99), and only 30.4% carried somatic events in CHEK2 (n = 7/23). Finally, pathogenic germline cryptic splice variants were identified in SDHA and TSC1, and pathogenic germline CNVs were found in 18 patients, including CNVs in FH, SDHA, and VHL. Conclusions and clinical implications: This analysis supports the existing link between several RCC risk genes and RCC risk manifesting in earlier age of onset. It calls for caution when assessing the role of CHEK2 due to the burden of founder variants with varying population frequency. It also broadens the definition of the RCC germline landscape of pathogenicity to incorporate previously understudied types of germline variants. Patient summary: In this study, we carefully compared the frequency of rare inherited mutations with a focus on patients' genetic ancestry. We discovered that subtle variations in genetic background may confound a case-control analysis, especially in evaluating the cancer risk associated with specific genes, such as CHEK2. We also identified previously less explored forms of rare inherited mutations, which could potentially increase the risk of kidney cancer.
RESUMO
Racial and ethnic disparities in adverse pregnancy outcomes (APOs) have been well-documented in the United States, but the extent to which the disparities are present in high-risk subgroups have not been studied. To address this problem, we first applied association rule mining to the clinical data derived from the prospective nuMoM2b study cohort to identify subgroups at increased risk of developing four APOs (gestational diabetes, hypertension acquired during pregnancy, preeclampsia, and preterm birth). We then quantified racial/ethnic disparities within the cohort as well as within high-risk subgroups to assess potential effects of risk-reduction strategies. We identify significant differences in distributions of major risk factors across racial/ethnic groups and find surprising heterogeneity in APO prevalence across these populations, both in the cohort and in its high-risk subgroups. Our results suggest that risk-reducing strategies that simultaneously reduce disparities may require targeting of high-risk subgroups with considerations for the population context.
Assuntos
Resultado da Gravidez , Nascimento Prematuro , Gravidez , Feminino , Recém-Nascido , Humanos , Estados Unidos , Nascimento Prematuro/epidemiologia , Nascimento Prematuro/etiologia , Estudos Prospectivos , Biologia Computacional , Fatores de RiscoRESUMO
BACKGROUND: Breast cancer patients from the indigenous Arab population present much earlier than patients from Western countries and have traditionally been underrepresented in cancer genomics studies. The contribution of polygenic and Mendelian risk toward the earlier onset of breast cancer in the population remains elusive. METHODS: We performed low-pass whole genome sequencing (lpWGS) and whole-exome sequencing (WES) from 220 female breast cancer patients unselected for positive family history from the indigenous Arab population. Using publicly available resources, we imputed population-specific variants and calculated breast cancer burden-sensitive polygenic risk scores (PRS). Variant pathogenicity was also evaluated on exome variants with high coverage. RESULTS: Variants imputed from lpWGS showed high concordance with paired exome (median dosage correlation: 0.9459, Interquartile range: 0.9410-0.9490). After adjusting the PRS to the Arab population, we found significant associations between PRS performance in risk prediction and first-degree relative breast cancer history prediction (Spearman rho=0.43, p = 0.03), where breast cancer patients in the top PRS decile are 5.53 (95% CI 1.76-17.97, p = 0.003) times more likely also to have a first-degree relative diagnosed with breast cancer compared to those in the middle deciles. In addition, we found evidence for the genetic liability threshold model of breast cancer where among patients with a family history of breast cancer, pathogenic rare variant carriers had significantly lower PRS than non-carriers (p = 0.0205, Mann-Whitney U test) while for non-carriers every standard deviation increase in PRS corresponded to 4.52 years (95% CI 8.88-0.17, p = 0.042) earlier age of presentation. CONCLUSIONS: Overall, our study provides a framework to assess polygenic risk in an understudied population using lpWGS and identifies common variant risk as a factor independent of pathogenic variant carrier status for earlier age of onset of breast cancer among indigenous Arab breast cancer patients.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Árabes/genética , Mama , Fatores de Risco , ExomaRESUMO
Aim: The indigenous Arab population is underrepresented in genomic studies and the landscape of actionable pharmacogenomic variants among Arab breast cancer patients remains unclear. Materials & methods: Exome sequencing was performed on 220 unselected Arab female breast cancer patients and germline variants in CYP2D6 and DPYD were profiled using a deep learning method. Results: In total, 13 (5.9%) patients had clinically actionable results and 56 (25.5%) carried an allele in DYPD or CYP2D6 with unknown impact on drug metabolism. In addition, four unique novel missense variants were discovered, including one in CYP2D6 (p.Arg64Leu) with high predicted pathogenicity. Conclusion: A nontrivial subset of Arab breast cancer patients can potentially benefit from pretreatment molecular profiling, and further study is needed to improve characterization of the pharmacogenomic landscape.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Variantes Farmacogenômicos/genética , Tamoxifeno/uso terapêutico , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Árabes/genéticaRESUMO
IMPORTANCE: RCC encompasses a set of histologically distinct cancers with a high estimated genetic heritability, of which only a portion is currently explained. Previous rare germline variant studies in RCC have usually pooled clear and non-clear cell RCCs and have not adequately accounted for population stratification that may significantly impact the interpretation and discovery of certain candidate risk genes. OBJECTIVE: To evaluate the enrichment of germline PVs in established cancer-predisposing genes (CPGs) in clear cell and non-clear cell RCC patients compared to cancer-free controls using approaches that account for population stratification and to identify unconventional types of germline RCC risk variants that confer an increased risk of developing RCC. DESIGN SETTING AND PARTICIPANTS: In 1,436 unselected RCC patients with sufficient data quality, we systematically identified rare germline PVs, cryptic splice variants, and copy number variants (CNVs). From this unselected cohort, 1,356 patients were ancestry-matched with 16,512 cancer-free controls, and gene-level enrichment of rare germline PVs were assessed in 143 CPGs, followed by an investigation of somatic events in matching tumor samples. MAIN OUTCOMES AND MEASURES: Gene-level burden of rare germline PVs, identification of secondary somatic events accompanying the germline PVs, and characterization of less-explored types of rare germline PVs in RCC patients. RESULTS: In clear cell RCC (n = 976 patients), patients exhibited significantly higher prevalence of PVs in VHL compared to controls (OR: 39.1, 95% CI: 7.01-218.07, p-value:4.95e-05, q-value:0.00584). In non-clear cell RCC (n = 380 patients), patients carried enriched burden of PVs in FH (OR: 77.9, 95% CI: 18.68-324.97, p-value:1.55e-08, q-value: 1.83e-06) and MET (OR: 1.98e11, 95% CI: 0-inf, p-value: 2.07e-05, q-value: 3.50e-07). In a CHEK2-focused analysis with European cases and controls, clear cell RCC patients (n=906 European patients) harbored nominal enrichment of the previously reported low-penetrance CHEK2 variants, p.Ile157Thr (OR:1.84, 95% CI: 1.00-3.36, p-value:0.049) and p.Ser428Phe (OR:5.20, 95% CI: 1.00-26.40, p-value:0.045) while non-clear cell RCC patients (n=295 European patients) exhibited nominal enrichment of CHEK2 LOF germline PVs (OR: 3.51, 95% CI: 1.10-11.10, p-value: 0.033). RCC patients with germline PVs in FH, MET, and VHL exhibited significantly earlier age of cancer onset compared to patients without any germline PVs in CPGs (Mean: 46.0 vs 60.2 years old, Tukey adjusted p-value < 0.0001), and more than half had secondary somatic events affecting the same gene (n=10/15, 66.7%, 95% CI: 38.7-87.0%). Conversely, patients with rare germline PVs in CHEK2 exhibited a similar age of disease onset to patients without any identified germline PVs in CPGs (Mean: 60.1 vs 60.2 years old, Tukey adjusted p-value: 0.99), and only 30.4% of the patients carried secondary somatic events in CHEK2 (n=7/23, 95% CI: 14.1-53.0%). Finally, rare pathogenic germline cryptic splice variants underexplored in RCC were identified in SDHA and TSC1, and rare pathogenic germline CNVs were found in 18 patients, including CNVs in FH, SDHA, and VHL. CONCLUSIONS AND RELEVANCE: This systematic analysis supports the existing link between several RCC risk genes and elevated RCC risk manifesting in earlier age of RCC onset. Our analysis calls for caution when assessing the role of germline PVs in CHEK2 due to the burden of founder variants with varying population frequency in different ancestry groups. It also broadens the definition of the RCC germline landscape of pathogenicity to incorporate previously understudied types of germline variants, such as cryptic splice variants and CNVs.
RESUMO
Importance: Polygenic risk scores (PRS) for type 2 diabetes (T2D) can improve risk prediction for gestational diabetes (GD), yet the strength of the association between genetic and lifestyle risk factors has not been quantified. Objective: To assess the association of PRS and physical activity in existing GD risk models and identify patient subgroups who may receive the most benefits from a PRS or physical activity intervention. Design, Settings, and Participants: The Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be cohort was established to study individuals without previous pregnancy lasting at least 20 weeks (nulliparous) and to elucidate factors associated with adverse pregnancy outcomes. A subcohort of 3533 participants with European ancestry was used for risk assessment and performance evaluation. Participants were enrolled from October 5, 2010, to December 3, 2013, and underwent genotyping between February 19, 2019, and February 28, 2020. Data were analyzed from September 15, 2020, to November 10, 2021. Exposures: Self-reported total physical activity in early pregnancy was quantified as metabolic equivalents of task (METs). Polygenic risk scores were calculated for T2D using contributions of 84 single nucleotide variants, weighted by their association in the Diabetes Genetics Replication and Meta-analysis Consortium data. Main Outcomes and Measures: Estimation of the development of GD from clinical, genetic, and environmental variables collected in early pregnancy, assessed using measures of model discrimination. Odds ratios and positive likelihood ratios were used to evaluate the association of PRS and physical activity with GD risk. Results: A total of 3533 women were included in this analysis (mean [SD] age, 28.6 [4.9] years). In high-risk population subgroups (body mass index ≥25 or aged ≥35 years), individuals with high PRS (top 25th percentile) or low activity levels (METs <450) had increased odds of a GD diagnosis of 25% to 75%. Compared with the general population, participants with both high PRS and low activity levels had higher odds of a GD diagnosis (odds ratio, 3.4 [95% CI, 2.3-5.3]), whereas participants with low PRS and high METs had significantly reduced risk of a GD diagnosis (odds ratio, 0.5 [95% CI, 0.3-0.9]; P = .01). Conclusions and Relevance: In this cohort study, the addition of PRS was associated with the stratified risk of GD diagnosis among high-risk patient subgroups, suggesting the benefits of targeted PRS ascertainment to encourage early intervention.