Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(13): 9045-9062, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488310

RESUMO

Methods for the synthesis of α-branched alkylamines are important due to their ubiquity in biologically active molecules. Despite the development of many methods for amine preparation, C(sp3)-rich nitrogen-containing compounds continue to pose challenges for synthesis. While carbonyl reductive amination (CRA) between ketones and alkylamines is the cornerstone method for α-branched alkylamine synthesis, it is sometimes limited by the sterically demanding condensation step between dialkyl ketones and amines and the more restricted availability of ketones compared to aldehydes. We recently reported a "higher-order" variant of this transformation, carbonyl alkylative amination (CAA), which utilized a halogen atom transfer (XAT)-mediated radical mechanism, enabling the streamlined synthesis of complex α-branched alkylamines. Despite the efficacy of this visible-light-driven approach, it displayed scalability issues, and competitive reductive amination was a problem for certain substrate classes, limiting applicability. Here, we report a change in the reaction regime that expands the CAA platform through the realization of an extremely broad zinc-mediated CAA reaction. This new strategy enabled elimination of competitive CRA, simplified purification, and improved reaction scope. Furthermore, this new reaction harnessed carboxylic acid derivatives as alkyl donors and facilitated the synthesis of α-trialkyl tertiary amines, which cannot be accessed via CRA. This Zn-mediated CAA reaction can be carried out at a variety of scales, from a 10 µmol setup in microtiter plates enabling high-throughput experimentation, to the gram-scale synthesis of medicinally-relevant compounds. We believe that this transformation enables robust, efficient, and economical access to α-branched alkylamines and provides a viable alternative to the current benchmark methods.

2.
Chem Rev ; 122(2): 1752-1829, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34546740

RESUMO

Chemically modified biomacromolecules─i.e., proteins, nucleic acids, glycans, and lipids─have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.


Assuntos
Luz , Ácidos Nucleicos , Ácidos Nucleicos/química , Oxirredução , Polissacarídeos , Proteínas/química
4.
Angew Chem Int Ed Engl ; 63(5): e202317522, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38085688

RESUMO

The prevalence of drug-resistant bacterial pathogens foreshadows a healthcare crisis. Calcium-dependent antibiotics (CDAs) are promising candidates to combat infectious diseases as many of them show modes of action (MOA) orthogonal to widespread resistance mechanisms. The calcium dependence is nonetheless one of the hurdles toward realizing their full potential. Using laspartomycin C (LspC) as a model, we explored the possibility of reducing, or even eliminating, its calcium dependence. We report herein a synthetic LspC analogue (B1) whose activity no longer depends on calcium and is instead induced by phenylboronic acid (PBA). In LspC, Asp1 and Asp7 coordinate to calcium to anchor it in the active conformation; these residues are replaced by serine in B1 and condense with PBA to form a boronic ester with the same anchoring effect. Using thin-layer chromatography, MS, NMR, and complementation assays, we demonstrate that B1 inhibits bacterial growth via the same MOA as LspC, i.e., sequestering the cell wall biosynthetic intermediate undecaprenyl phosphate. B1 is as potent and effective as LspC against several Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. Our success in converting a CDA to a boron-dependent antibiotic opens a new avenue in the design and functional control of drug molecules.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Cálcio , Boro , Bactérias , Testes de Sensibilidade Microbiana
5.
J Neuroinflammation ; 20(1): 237, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858199

RESUMO

INTRODUCTION: Glucose transporter 1 (GLUT1) is essential for glucose transport into the brain and is predominantly expressed in the cerebral microvasculature. Downregulation of GLUT1 precedes the development of cognitive impairment in neurodegenerative conditions. Surgical trauma induces blood-brain barrier (BBB) disruption, neuroinflammation, neuronal mitochondria dysfunction, and acute cognitive impairment. We hypothesized that surgery reduces the expression of GLUT1 in the BBB that in turn disrupts its integrity and contributes to metabolic dysregulation in the brain that culminates in postoperative cognitive impairment. METHODOLOGY: Using an abdominal surgery model in aged WT mice, we assessed the perioperative changes in cognitive performance, tight junction proteins expression, GLUT1 expression, and the associated metabolic effects in the hippocampus. Thereafter, we evaluated the effects of these parameters in aged mice with conditional overexpression of GLUT1, and then again in aged mice with conditional overexpression of GLUT1 with or without prior exposure to the GLUT1 inhibitor ST-31. RESULTS: We showed a significant decline in cognitive performance, along with GLUT1 reduction and diminished glucose metabolism, especially in the ATP level in the postoperative mice compared with controls. Overexpression of GLUT1 expression alleviated postoperative cognitive decline and improved metabolic profiles, especially in adenosine, but did not directly restore ATP generation to control levels. GLUT1 inhibition ameliorated the postoperative beneficial effects of GLUT1 overexpression. CONCLUSIONS: Surgery-induced GLUT1 reduction significantly contributes to postoperative cognitive deficits in aged mice by affecting glucose metabolism in the brain. It indicates the potential of targeting GLUT1 to ameliorate perioperative neurocognitive disorders.


Assuntos
Barreira Hematoencefálica , Transtornos Cognitivos , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Barreira Hematoencefálica/metabolismo , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Regulação para Baixo , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Microvasos/metabolismo
6.
Nature ; 549(7670): 48-53, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28854168

RESUMO

Commensal bacteria are believed to have important roles in human health. The mechanisms by which they affect mammalian physiology remain poorly understood, but bacterial metabolites are likely to be key components of host interactions. Here we use bioinformatics and synthetic biology to mine the human microbiota for N-acyl amides that interact with G-protein-coupled receptors (GPCRs). We found that N-acyl amide synthase genes are enriched in gastrointestinal bacteria and the lipids that they encode interact with GPCRs that regulate gastrointestinal tract physiology. Mouse and cell-based models demonstrate that commensal GPR119 agonists regulate metabolic hormones and glucose homeostasis as efficiently as human ligands, although future studies are needed to define their potential physiological role in humans. Our results suggest that chemical mimicry of eukaryotic signalling molecules may be common among commensal bacteria and that manipulation of microbiota genes encoding metabolites that elicit host cellular responses represents a possible small-molecule therapeutic modality (microbiome-biosynthetic gene therapy).


Assuntos
Amidas/metabolismo , Bactérias/metabolismo , Mimetismo Biológico , Trato Gastrointestinal/microbiologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Simbiose , Amidas/química , Animais , Bactérias/enzimologia , Bactérias/genética , Glicemia/metabolismo , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/metabolismo , Células HEK293 , Homeostase , Humanos , Ligantes , Masculino , Camundongos
7.
J Neuroinflammation ; 19(1): 150, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705955

RESUMO

BACKGROUND: Postoperative neurocognitive dysfunction remains a significant problem in vulnerable groups such as the elderly. While experimental data regarding its possible pathogenic mechanisms accumulate, therapeutic options for this disorder are limited. In this study, we evaluated the neuroprotective effect of a period of preconditioning resistant training on aged mice undergoing abdominal surgery. Further, we examined the underlying mechanisms from the perspective of neuroinflammatory state and synaptic plasticity in the hippocampus. METHODS: 18-month-old C57BL/6N mice were trained for 5 weeks using a ladder-climbing protocol with progressively increasing weight loading. Preoperative baseline body parameters, cognitive performance and neuroinflammatory states were assessed and compared between sedentary and trained groups of 9-month-old and 18-month-old mice. To access the neuroprotective effect of resistance training on postoperative aged mice, both sedentary and trained mice were subjected to a laparotomy under 3% sevoflurane anesthesia. Cognitive performance on postoperative day 14, hippocampal neuroinflammation, mitochondrial dysfunction and synaptic plasticity were examined and compared during groups. RESULTS: 18-month-old mice have increased body weight, higher peripheral and central inflammatory status, reduction in muscle strength and cognitive performance compared with middle-aged 9-month-old mice, which were improved by resistance exercise. In the laparotomy group, prehabilitative resistant exercise improved cognitive performance and synaptic plasticity, reduced inflammatory factors and glial cells activation after surgery. Furthermore, resistance exercise activated hippocampal PGC-1α/BDNF/Akt/GSK-3ß signaling and improved mitochondrial biogenesis, as well as ameliorated mitochondrial dynamics in postoperative-aged mice. CONCLUSIONS: Resistance exercise reduced risk factors for perioperative neurocognitive disorders such as increased body weight, elevated inflammatory markers, and pre-existing cognitive impairment. Accordantly, preoperative resistance exercise improved surgery-induced adverse effects including cognitive impairment, synaptic deficit and neuroinflammation, possibly by facilitate mitochondrial health through the PGC1-a/BDNF pathway.


Assuntos
Disfunção Cognitiva , Fármacos Neuroprotetores , Treinamento Resistido , Idoso , Animais , Peso Corporal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/prevenção & controle , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Transtornos Neurocognitivos/etiologia , Transtornos Neurocognitivos/prevenção & controle , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Treinamento Resistido/métodos
8.
Chembiochem ; 23(24): e202200563, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36278314

RESUMO

Capreomycidine (Cap) is a nonproteinogenic amino acid and building block of nonribosomal peptide (NRP) natural products. We report the formation and activation of Cap in capreomycin biosynthesis. CmnC and CmnD catalyzed hydroxylation and cyclization, respectively, of l-Arg to form l-Cap. l-Cap is then adenylated by CmnG-A before being incorporated into the nonribosomal peptide. The co-crystal structures of CmnG-A with l-Cap and adenosine nucleotides provide insights into the specificity and engineering opportunities of this unique adenylation domain.


Assuntos
Aminoácidos , Peptídeo Sintases , Peptídeo Sintases/metabolismo , Capreomicina , Especificidade por Substrato , Peptídeos/química
9.
Nature ; 539(7628): 272-275, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27732580

RESUMO

Carbon-carbon (C-C) bond formation is paramount in the synthesis of biologically relevant molecules, modern synthetic materials and commodity chemicals such as fuels and lubricants. Traditionally, the presence of a functional group is required at the site of C-C bond formation. Strategies that allow C-C bond formation at inert carbon-hydrogen (C-H) bonds enable access to molecules that would otherwise be inaccessible and the development of more efficient syntheses of complex molecules. Here we report a method for the formation of C-C bonds by directed cleavage of traditionally non-reactive C-H bonds and their subsequent coupling with readily available alkenes. Our methodology allows for amide-directed selective C-C bond formation at unactivated sp3 C-H bonds in molecules that contain many such bonds that are seemingly indistinguishable. Selectivity arises through a relayed photoredox-catalysed oxidation of a nitrogen-hydrogen bond. We anticipate that our findings will serve as a starting point for functionalization at inert C-H bonds through a strategy involving hydrogen-atom transfer.


Assuntos
Amidas/química , Carbono/química , Técnicas de Química Sintética , Hidrogênio/química , Catálise/efeitos da radiação , Ligação de Hidrogênio/efeitos da radiação , Nitrogênio/química , Oxirredução/efeitos da radiação
10.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35682930

RESUMO

Perioperative neurocognitive disorders are frequently observed in postoperative patients and previous reports have shown that pre-existing mild cognitive impairment with accumulated neuropathology may be a risk factor. Sevoflurane is a general anesthetic agent which is commonly used in clinical practice. However, the effects of sevoflurane in postoperative subjects are still controversial, as both neurotoxic or neuroprotective effects were reported. The purpose of this study is to investigate the effects of sevoflurane in 3 × Tg mice, a specific animal model with pre-existing Alzheimer's disease neuropathology. 3 × Tg mice and wild-type mice were exposed to 2 h of sevoflurane respectively. Cognitive function, glutamate transporter expression, MAPK kinase pathways, and neuronal apoptosis were accessed on day 7 post-exposure. Our findings indicate that sevoflurane-induced cognitive deterioration in 3 × Tg mice, which was accompanied with the modulation of glutamate transporter, MAPK signaling, and neuronal apoptosis in the cortical and hippocampal regions. Meanwhile, no significant impact was observed in wild-type mice. Our results demonstrated that prolonged inhaled sevoflurane results in the exacerbation of neuronal and cognitive dysfunction which depends on the neuropathology background.


Assuntos
Doença de Alzheimer , Anestésicos Inalatórios , Síndromes Neurotóxicas , Doença de Alzheimer/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Anestésicos Inalatórios/efeitos adversos , Animais , Apoptose , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Camundongos , Síndromes Neurotóxicas/metabolismo , Sevoflurano/efeitos adversos
11.
Anal Chem ; 93(4): 2456-2463, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33416326

RESUMO

Combinatorial synthesis has been widely used as an efficient strategy to screen for active compounds. Mass spectrometry is the method of choice in the identification of hits resulting from high-throughput screenings due to its high sensitivity, specificity, and speed. However, manual data processing of mass spectrometry data, especially for structurally diverse products in combinatorial chemistry, is extremely time-consuming and one of the bottlenecks in this process. In this study, we demonstrated the effectiveness of a tandem mass spectrometry molecular networking-based strategy for product identification, reaction dynamics monitoring, and active compound targeting in combinatorial synthesis. Molecular networking connects compounds with similar tandem mass spectra into a cluster and has been widely used in natural products analysis. We show that both the expected and side products can be readily characterized using molecular networking based on their mass spectrometry fragmentation patterns. Additionally, time-dependent molecular networking was integrated to track reaction dynamics to determine the optimal reaction time to maximize target product yields. We also present a proof-of-concept experiment that successfully identified and isolated active molecules from a dynamic combinatorial library. These results demonstrated the potential of using molecular networking for identifying, tracking, and high-throughput screening of active compounds in combinatorial synthesis.

12.
J Am Chem Soc ; 142(33): 14158-14168, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32697091

RESUMO

Bacterial natural products have inspired the development of numerous antibiotics in use today. As resistance to existing antibiotics has become more prevalent, new antibiotic lead structures and activities are desperately needed. An increasing number of natural product biosynthetic gene clusters, to which no known molecules can be assigned, are found in genome and metagenome sequencing data. Here we access structural information encoded in this underexploited resource using a synthetic-bioinformatic natural product (syn-BNP) approach, which relies on bioinformatic algorithms followed by chemical synthesis to predict and then produce small molecules inspired by biosynthetic gene clusters. In total, 157 syn-BNP cyclic peptides inspired by 96 nonribosomal peptide synthetase gene clusters were synthesized and screened for antibacterial activity. This yielded nine antibiotics with activities against ESKAPE pathogens as well as Mycobacterium tuberculosis. Not only are antibiotic-resistant pathogens susceptible to many of these syn-BNP antibiotics, but they were also unable to develop resistance to these antibiotics in laboratory experiments. Characterized modes of action for these antibiotics include cell lysis, membrane depolarization, inhibition of cell wall biosynthesis, and ClpP protease dysregulation. Increasingly refined syn-BNP-based explorations of biosynthetic gene clusters should allow for more rapid identification of evolutionarily inspired bioactive small molecules, in particular antibiotics with diverse mechanism of actions that could help confront the imminent crisis of antimicrobial resistance.


Assuntos
Antibacterianos/farmacologia , Produtos Biológicos/farmacologia , Biologia Computacional , Mycobacterium tuberculosis/efeitos dos fármacos , Algoritmos , Antibacterianos/síntese química , Antibacterianos/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular
13.
J Neuroinflammation ; 17(1): 4, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900170

RESUMO

BACKGROUND: Both human and animal studies have shown beneficial effects of physical exercise on brain health but most tend to be based on aerobic rather than resistance type regimes. Resistance exercise has the advantage of improving both muscular and cardiovascular function, both of which can benefit the frail and the elderly. However, the neuroprotective effects of resistance training in cognitive impairment are not well characterized. METHODS: We evaluated whether short-term resistant training could improve cognitive function and pathological changes in mice with pre-existing cognitive impairment. Nine-month-old 3xTg mouse underwent a resistance training protocol of climbing up a 1-m ladder with a progressively heavier weight loading. RESULTS: Compared with sedentary counterparts, resistance training improved cognitive performance and reduced neuropathological and neuroinflammatory changes in the frontal cortex and hippocampus of mice. In line with these results, inhibition of pro-inflammatory intracellular pathways was also demonstrated. CONCLUSIONS: Short-term resistance training improved cognitive function in 3xTg mice, and conferred beneficial effects on neuroinflammation, amyloid and tau pathology, as well as synaptic plasticity. Resistance training may represent an alternative exercise strategy for delaying disease progression in Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Mediadores da Inflamação/metabolismo , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/psicologia , Treinamento Resistido/métodos , Doença de Alzheimer/terapia , Animais , Cognição/fisiologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/terapia , Mediadores da Inflamação/antagonistas & inibidores , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Condicionamento Físico Animal/fisiologia , Fatores de Tempo
14.
J Am Chem Soc ; 141(40): 15737-15741, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31545899

RESUMO

Bioinformatic analysis of sequenced bacterial genomes has uncovered an increasing number of natural product biosynthetic gene clusters (BGCs) to which no known bacterial metabolite can be ascribed. One emerging method we have investigated for studying these BGCs is the synthetic-Bioinformatic Natural Product (syn-BNP) approach. The syn-BNP approach replaces transcription, translation, and in vivo enzymatic biosynthesis of natural products with bioinformatic algorithms to predict the output of a BGC and in vitro chemical synthesis to produce the predicted structure. Here we report on expanding the syn-BNP approach to the design and synthesis of cyclic peptides inspired by nonribosomal peptide synthetase BGCs associated with the human microbiota. While no syn-BNPs we tested inhibited the growth of bacteria or yeast, five were found to be active in the human cell-based MTT metabolic activity assay. Interestingly, active peptides were mostly inspired by BGCs found in the genomes of opportunistic pathogens that are often more commonly associated with environments outside the human microbiome. The cyclic syn-BNP studies presented here provide further evidence of its potential for identifying bioactive small molecules directly from the instructions encoded in the primary sequences of natural product BGCs.


Assuntos
Produtos Biológicos/química , Vias Biossintéticas/genética , Microbiota/genética , Família Multigênica , Peptídeo Sintases/genética , Peptídeos Cíclicos/química , Biologia Computacional/métodos , Genoma Bacteriano , Humanos , Estrutura Molecular
15.
Lab Invest ; 99(7): 943-957, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30808929

RESUMO

Growing evidence has shown the beneficial influence of exercise on humans. Apart from classic cardioprotection, numerous studies have demonstrated that different exercise regimes provide a substantial improvement in various brain functions. Although the underlying mechanism is yet to be determined, emerging evidence for neuroprotection has been established in both humans and experimental animals, with most of the valuable findings in the field of mental health, neurodegenerative diseases, and acquired brain injuries. This review will discuss the recent findings of how exercise could ameliorate brain function in neuropathological states, demonstrated by either clinical or laboratory animal studies. Simultaneously, state-of-the-art molecular mechanisms underlying the exercise-induced neuroprotective effects and comparison between different types of exercise will be discussed in detail. A majority of reports show that physical exercise is associated with enhanced cognition throughout different populations and remains as a fascinating area in scientific research because of its universal protective effects in different brain domain functions. This article is to review what we know about how physical exercise modulates the pathophysiological mechanisms of neurodegeneration.


Assuntos
Encefalopatias/terapia , Encéfalo/fisiologia , Terapia por Exercício , Exercício Físico/fisiologia , Doenças Neurodegenerativas/terapia , Animais , Humanos , Transtornos Mentais/terapia , Doenças Neurodegenerativas/metabolismo , Condicionamento Físico Animal/fisiologia
16.
Angew Chem Int Ed Engl ; 58(12): 4002-4006, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30768740

RESUMO

The synthetic utility of tertiary amines to oxidatively generate α-amino radicals is well established, however, primary amines remain challenging because of competitive side reactions. This report describes the site-selective α-functionalization of primary amine derivatives through the generation of α-amino radical intermediates. Employing visible-light photoredox catalysis, primary sulfonamides are coupled with electron-deficient alkenes to efficiently and mildly construct C-C bonds. Interestingly, a divergence between intermolecular hydrogen-atom transfer (HAT) catalysis and intramolecular [1,5] HAT was observed through precise manipulation of the protecting group. This dichotomy was leveraged to achieve excellent α/δ site-selectivity.


Assuntos
Aminas/química , Carbono/química , Luz , Alquilação , Catálise , Hidrogênio/química , Oxirredução , Sulfonamidas/química
17.
Nat Chem Biol ; 12(12): 1004-1006, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27748750

RESUMO

Here we present a natural product discovery approach, whereby structures are bioinformatically predicted from primary sequence and produced by chemical synthesis (synthetic-bioinformatic natural products, syn-BNPs), circumventing the need for bacterial culture and gene expression. When we applied the approach to nonribosomal peptide synthetase gene clusters from human-associated bacteria, we identified the humimycins. These antibiotics inhibit lipid II flippase and potentiate ß-lactam activity against methicillin-resistant Staphylococcus aureus in mice, potentially providing a new treatment regimen.


Assuntos
Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Descoberta de Drogas/métodos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Microbiota/genética , Antibacterianos/síntese química , Antibacterianos/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Humanos , Lipopeptídeos/síntese química , Lipopeptídeos/química , Lipopeptídeos/genética , Lipopeptídeos/farmacologia , Staphylococcus aureus Resistente à Meticilina/enzimologia , Testes de Sensibilidade Microbiana , Conformação Molecular , Peptídeo Sintases/genética , beta-Lactamas/agonistas , beta-Lactamas/metabolismo
18.
Proc Natl Acad Sci U S A ; 112(35): E4825-34, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26283367

RESUMO

The trillions of bacteria that make up the human microbiome are believed to encode functions that are important to human health; however, little is known about the specific effectors that commensal bacteria use to interact with the human host. Functional metagenomics provides a systematic means of surveying commensal DNA for genes that encode effector functions. Here, we examine 3,000 Mb of metagenomic DNA cloned from three phenotypically distinct patients for effectors that activate NF-κB, a transcription factor known to play a central role in mediating responses to environmental stimuli. This screen led to the identification of 26 unique commensal bacteria effector genes (Cbegs) that are predicted to encode proteins with diverse catabolic, anabolic, and ligand-binding functions and most frequently interact with either glycans or lipids. Detailed analysis of one effector gene family (Cbeg12) recovered from all three patient libraries found that it encodes for the production of N-acyl-3-hydroxypalmitoyl-glycine (commendamide). This metabolite was also found in culture broth from the commensal bacterium Bacteroides vulgatus, which harbors a gene highly similar to Cbeg12. Commendamide resembles long-chain N-acyl-amides that function as mammalian signaling molecules through activation of G-protein-coupled receptors (GPCRs), which led us to the observation that commendamide activates the GPCR G2A/GPR132. G2A has been implicated in disease models of autoimmunity and atherosclerosis. This study shows the utility of functional metagenomics for identifying potential mechanisms used by commensal bacteria for host interactions and outlines a functional metagenomics-based pipeline for the systematic identification of diverse commensal bacteria effectors that impact host cellular functions.


Assuntos
Glicina/análogos & derivados , Metagenômica , Microbiota , Palmitatos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , DNA/genética , Glicina/farmacologia , Células HEK293 , Humanos , Microscopia de Fluorescência , Dados de Sequência Molecular , Filogenia
19.
Angew Chem Int Ed Engl ; 57(1): 62-101, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29206316

RESUMO

The functionalization of C(sp3 )-H bonds streamlines chemical synthesis by allowing the use of simple molecules and providing novel synthetic disconnections. Intensive recent efforts in the development of new reactions based on C-H functionalization have led to its wider adoption across a range of research areas. This Review discusses the strengths and weaknesses of three main approaches: transition-metal-catalyzed C-H activation, 1,n-hydrogen atom transfer, and transition-metal-catalyzed carbene/nitrene transfer, for the directed functionalization of unactivated C(sp3 )-H bonds. For each strategy, the scope, the reactivity of different C-H bonds, the position of the reacting C-H bonds relative to the directing group, and stereochemical outcomes are illustrated with examples in the literature. The aim of this Review is to provide guidance for the use of C-H functionalization reactions and inspire future research in this area.

20.
J Am Chem Soc ; 139(42): 14897-14900, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29022709

RESUMO

Visible light photoredox catalysis enables direct γ- C(sp3)-H alkylation of saturated aliphatic carbonyl compounds. Electron-deficient alkenes are used as the coupling partners in this reaction. Distinguished site selectivity is controlled by the predominant 1,5-hydrogen atom transfer of an amidyl radical generated in situ.


Assuntos
Ácidos Carboxílicos/química , Ácidos Carboxílicos/efeitos da radiação , Luz , Alcenos/química , Alcenos/efeitos da radiação , Alquilação/efeitos da radiação , Catálise/efeitos da radiação , Hidrogênio/química , Oxirredução/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA