Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 261: 110204, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148275

RESUMO

The effects of exogenous Escherichia coli on nitrogen cycling (N-cycling) in freshwater remains unclear. Thus, seven ecosystems, six with submerged plants-Potamogeton crispus (PC) and Myriophyllum aquaticum (MA)-and one with no plants were set up. Habitats were assessed before and after E. coli addition (107 colony-forming units/mL). E. coli colonization of freshwater ecosystems had significant effects on bacterial community structure in plant surface biofilms and surface sediments (ANOVA, P < 0.05). It reduced the relative abundance of nitrosification bacteria (-70.94 ± 26.17%) and nitrifiers (-47.86 ± 23.68%) in biofilms which lead to significant reduction of ammoxidation in water (P < 0.05). The N-cycling intensity from PC systems was affected more strongly by E. coli than were MA systems. Furthermore, the coupling coefficient of exogenous E. coli to indigenous N-cycling bacteria in sediments (6.061, average connectivity degree) was significantly weaker than that in biofilms (9.852). Additionally, at the genus level, E. coli were most-closely associated with N-cycling bacteria such as Prosthecobacter, Hydrogenophaga, and Bacillus in sediments and biofilms according to co-occurrence bacterial network (Spearman). E. coli directly changed their abundance, so that the variability of species composition of N-cycling bacterial taxa was triggered, as well. Overall, exogenous E. coli repressed ammoxidation, but promoted ammonification and denitrification. Our results provided new insights into how pathogens influence the nitrogen cycle in freshwater ecosystems.


Assuntos
Ecossistema , Escherichia coli , Bactérias , Nitrogênio , Ciclo do Nitrogênio
2.
Environ Pollut ; 314: 120266, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162562

RESUMO

The presence of Per-, Poly-fluoroalkyl substances (PFASs) in aquatic ecosystems has drawn broad concerns in the scientific community due to their biological toxicity. However, little has been explored regarding PFASs' removal in phytoplankton-dominated environments. This study aimed to create a simulated bacteria-algae symbiotic ecosystem to observe the potential transportation of PFASs. Mass distributions showed that sand (63-2000 µm), silt & clay (0-63 µm), the phycosphere (>3 µm plankton), and the free-living biosphere (0.22-3 µm plankton) contained 19.00, 7.78, 5.73 and 2.75% PFASs in their total mass, respectively. Significant correlations were observed between carbon chain lengths and removal rates (R2 = 0.822, p < 10-4). Structural equation models revealed potential PFAS transportation pathways, such as water-phycosphere- free-living biosphere-sand-silt&clay, and water-sand-silt&clay (p < 0.05). The presence of PFASs decreased the bacterial density but increased algal density (p < 0.01) in the planktonic environment, and PFASs with longer carbon chain lengths showed a stronger enhancement in microbial community successions (p < 0.05). In algal metabolisms, chlorophyll-a and carotenoids were the key pigments that resisted reactive oxygen species caused by PFASs. PFBA (perfluorobutyric acid) (10.38-14.68%) and PFTeDA (perfluorotetradecanoic acid) (10.33-15.96%) affected bacterial metabolisms in phycosphere the most, while in the free-living biosphere was most effected by PFPeA (perfluorovaleric acid) (13.21-13.99%) and PFDoA (perfluorododecanoic acid) (10.04-10.50%). The results of this study provide new guidance measures for PFAS removal and management in aquatic environments.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Ecossistema , Argila , Areia , Espécies Reativas de Oxigênio , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Plantas , Clorofila A , Bactérias , Carbono , Água , Carotenoides
3.
Chemosphere ; 281: 130977, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34289625

RESUMO

Per-, Poly-fluoroalkyl substances (PFASs) accumulation in benthic environments is mainly determined by material mixing and represents a significant challenge to river remediation. However, less attention has been paid to the effects of sediment distribution on PFASs accumulation, and how PFASs influence microbial community coalescence and biogeochemical processes. In order to identify correlations between PFASs distribution and benthic microbial community functions, we conducted a field study and quantified the ecological constrains of material transportation on benthic microorganisms. Perfluorohexanoic acid (PFHxA) contributed most to the taxonomic heterogeneity of both archaeal (12.199%) and bacterial (13.675%) communities. Genera Methanoregula (R2 = 0.292) and Bacillus (R2 = 0.791) were identified as indicators that respond to PFASs. Phylogenetic null modeling indicated that deterministic processes (50.0-82.2%) dominated in spatial assembly of archaea, while stochasticity (94.4-97.8%) dominated in bacteria. Furthermore, spatial mixing of PFASs influenced broadly in nitrogen cycling of archaeal genomes, and phosphorus mineralization of bacterial genomes (p < 0.05). Overall, we quantified the effect of PFASs on community assembly and highlighted the constrains of PFASs influence on benthic geochemical potentials, which may provide new insights into riverine remediation.


Assuntos
Fluorocarbonos , Microbiota , Archaea/genética , Ecossistema , Fluorocarbonos/análise , Sedimentos Geológicos , Filogenia , Rios
4.
J Hazard Mater ; 401: 123252, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32634663

RESUMO

Determination of the effects of Escherichia coli (E. coli) pollution on agricultural pond ecosystems with vegetation at different life stages is essential for the protection of ecological functions. However, no comprehensive study has yet shown the responses of epiphytic microbial communities to E. coli invasion during plant decay. Thus, this study was conducted to clarify variation in the decay of the following aquatic plants-Myriophyllum aquaticum, Nymphaea tetragona and Phragmites australis after E. coli pollution. Exogenous E. coli especially shifted the epiphytic microbial composition and distribution of P. australis. Stronger effects of E. coli on the archaeal community (edges/nodes = 0.818 < 1, modularity = 0.654; lower clustered structure, 0.389) were found than on the bacterial community (edges/nodes = 1.538 > 1, modularity = 1.291 > 0.654; higher clustered, 0.593). During plant decomposition, E. coli weakened methanogenesis by regulating the network of core genera Methanobacterium and Methanospirillum (spearman, P < 0.05), stimulated the accumulation of organic matters in water (P < 0.05). Similarly, nitrification and denitrification increased and decreased through network regulation in relative biomass of genera Devosia and Desulfovibrio (P < 0.05), respectively. The results provided theoretical supports for eutrophication management in pond ecosystems threatened by E. coli pollution.


Assuntos
Escherichia coli , Microbiota , Archaea , Escherichia coli/genética , Nutrientes , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA