Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 18(31): e2202916, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35810451

RESUMO

Platinum-based atomically ordered alloys (i.e., intermetallic compounds) have distinct advantages over disordered solid solution counterparts in boosting the cathodic oxygen-reduction reaction (ORR) in proton-exchange-membrane fuel cells. Nevertheless, the pivotal role of ordering degree of intermetallic catalysts in promoting ORR performance has been ignored heavily so far, probably owing to the lack of synthetic routes for controlling the ordering degree, especially for preparing highly ordered intermetallic catalysts. Herein, a family of intermetallic PtFe catalysts with similar particle size of 3-4 nm but varied ordering degree in a wide range of 10-70% are prepared. After constructing the PtFe/Pt core/shell structure with around 3 Pt-layer skin, a positive correlation between the ordering degree of the intermetallic catalysts and their ORR activity and durability is identified. Notably, the highly ordered PtFe/Pt catalyst exhibits a high mass activity of 0.92 A mgPt -1 at 0.9 ViR-corrected as cathode catalyst in H2 -O2 fuel cell, with only 24% loss after accelerated durability tests. The ordering degree-dependent performance can be ascribed to the compressive strain effect induced by the intermetallic PtFe core with smaller lattice parameters, and the more thermodynamically stable intermetallic structure compared to disordered alloys.

2.
Small ; 17(26): e2100732, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34080772

RESUMO

The rational synthesis of single-layer noble metal directly anchored on support materials is an elusive target to accomplish for a long time. This paper reports well-defined single-layer Pt (Pt-SL) clusters anchored on ultrathin TiO2 nanosheets-as a new frontier in electrocatalysis. The structural evolution of Pt-SL/TiO2 via self-assembly of single Pt atoms (Pt-SA) is systematically recorded. Significantly, the Pt atoms of Pt-SL/TiO2 possess a unique electronic configuration with PtPt covalent bonds surrounded by abundant unpaired electrons. This Pt-SL/TiO2 catalyst presents enhanced electrochemical performance toward diverse electrocatalytic reactions (such as the hydrogen evolution reaction and the oxygen reduction reaction) compared with Pt-SA, multilayer Pt nanoclusters, and Pt nanoparticles, suggesting an efficient new type of catalyst that can be achieved by constructing single-layer atomic clusters on supports.

3.
Inorg Chem ; 59(21): 15953-15961, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33085476

RESUMO

Catalytic biomass conversions are sustainable processes to produce value-added fuels and chemicals but need stable catalysts that can tolerate harsh hydrothermal conditions. Herein, we report a hydrothermally stable catalyst by alloying Pt with a high-melting-point metal Nb. The Pt/Nb alloy catalysts are prepared by H2 reduction at a high temperature of 900 °C with a high-surface-area carbon black support, which can suppress metal sintering at high temperatures and thus lead to small-sized alloyed Pt/Nb particles of only 2.2 nm. Taking the advantages of surface acid property provided by the Nb sites and the size effect, the prepared C-supported small-sized Pt/Nb alloy catalysts exhibit attractive activities for the hydrogenation of levulinic acid into γ-valerolactone and the water-gas shift reaction. More significantly, benefiting from the inherent stability of high-melting-point Nb, the Pt/Nb alloy catalysts show much enhanced hydrothermal stability compared to commercial Pt/C and Ru/C catalysts.

4.
Angew Chem Int Ed Engl ; 59(4): 1627-1633, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31674103

RESUMO

The development of metal-N-C materials as efficient non-precious metal (NPM) catalysts for catalysing the oxygen reduction reaction (ORR) as alternatives to platinum is important for the practical use of proton exchange membrane fuel cells (PEMFCs). However, metal-N-C materials have high structural heterogeneity. As a result of their high-temperature synthesis they often consist of metal-Nx sites and graphene-encapsulated metal nanoparticles. Thus it is hard to identify the active structure of metal-N-C catalysts. Herein, we report a low-temperature NH4 Cl-treatment to etch out graphene-encapsulated nanoparticles from metal-N-C catalysts without destruction of co-existing atomically dispersed metal-Nx sites. Catalytic activity is much enhanced by this selective removal of metallic nanoparticles. Accordingly, we can confirm the spectator role of graphene-encapsulated nanoparticles and the pivotal role of metal-Nx sites in the metal-N-C materials for ORR in the acidic medium.

5.
Commun Chem ; 5(1): 43, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36697643

RESUMO

Electrochemical oxygen reduction provides an eco-friendly synthetic route to hydrogen peroxide (H2O2), a widely used green chemical. However, the kinetically sluggish and low-selectivity oxygen reduction reaction (ORR) is a key challenge to electrochemical production of H2O2 for practical applications. Herein, we demonstrate that single cobalt atoms anchored on oxygen functionalized graphene oxide form Co-O-C@GO active centres (abbreviated as Co1@GO for simplicity) that act as an efficient and durable electrocatalyst for H2O2 production. This Co1@GO electrocatalyst shows excellent electrochemical performance in O2-saturated 0.1 M KOH, exhibiting high reactivity with an onset potential of 0.91 V and H2O2 production of 1.0 mg cm-2 h-1 while affording high selectivity of 81.4% for H2O2. Our combined experimental observations and theoretical calculations indicate that the high reactivity and selectivity of Co1@GO for H2O2 electrogeneration arises from a synergistic effect between the O-bonded single Co atoms and adjacent oxygen functional groups (C-O bonds) of the GO present in the Co-O-C active centres.

6.
Nat Commun ; 13(1): 6521, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316330

RESUMO

Supported ordered intermetallic compounds exhibit superior catalytic performance over their disordered alloy counterparts in diverse reactions. But the synthesis of intermetallic compounds catalysts often requires high-temperature annealing that leads to the sintering of metals into larger crystallites. Herein, we report a small molecule-assisted impregnation approach to realize the general synthesis of a family of intermetallic catalysts, consisting of 18 binary platinum intermetallic compounds supported on carbon blacks. The molecular additives containing heteroatoms (that is, O, N, or S) can be coordinated with platinum in impregnation and thermally converted into heteroatom-doped graphene layers in high-temperature annealing, which significantly suppress alloy sintering and insure the formation of small-sized intermetallic catalysts. The prepared optimal PtCo intermetallics as cathodic oxygen-reduction catalysts exhibit a high mass activity of 1.08 A mgPt-1 at 0.9 V in H2-O2 fuel cells and a rated power density of 1.17 W cm-2 in H2-air fuel cells.

7.
Nat Commun ; 12(1): 3135, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035287

RESUMO

Supported metal nanoclusters consisting of several dozen atoms are highly attractive for heterogeneous catalysis with unique catalytic properties. However, the metal nanocluster catalysts face the challenges of thermal sintering and consequent deactivation owing to the loss of metal surface areas particularly in the applications of high-temperature reactions. Here, we report that sulfur-a documented poison reagent for metal catalysts-when doped in a carbon matrix can stabilize ~1 nanometer metal nanoclusters (Pt, Ru, Rh, Os, and Ir) at high temperatures up to 700 °C. We find that the enhanced adhesion strength between metal nanoclusters and the sulfur-doped carbon support, which arises from the interfacial metal-sulfur bonding, greatly retards both metal atom diffusion and nanocluster migration. In catalyzing propane dehydrogenation at 550 °C, the sulfur-doped carbon supported Pt nanocluster catalyst with interfacial electronic effects exhibits higher selectivity to propene as well as more stable durability than sulfur-free carbon supported catalysts.

8.
Natl Sci Rev ; 8(1): nwaa224, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34691561

RESUMO

While the surface charge state of co-catalysts plays a critical role for boosting photocatalysis, studies on surface charge regulation via their precise structure control remain extremely rare. Herein, metal-organic framework (MOF) stabilized bimetallic Pd@Pt nanoparticles, which feature adjustable Pt coordination environment and a controlled structure from core-shell to single-atom alloy (SAA), have been fabricated. Significantly, apart from the formation of a Mott-Schottky junction in a conventional way, we elucidate that Pt surface charge regulation can be alternatively achieved by changing its coordination environment and the structure of the Pd@Pt co-catalyst, where the charge between Pd and Pt is redistributed. As a result, the optimized Pd10@Pt1/MOF composite, which involves an unprecedented SAA co-catalyst, exhibits exceptionally high photocatalytic hydrogen production activity, far surpassing its corresponding counterparts.

9.
Science ; 374(6566): 459-464, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34672731

RESUMO

Atomically ordered intermetallic nanoparticles are promising for catalytic applications but are difficult to produce because the high-temperature annealing required for atom ordering inevitably accelerates metal sintering that leads to larger crystallites. We prepared platinum intermetallics with an average particle size of <5 nanometers on porous sulfur-doped carbon supports, on which the strong interaction between platinum and sulfur suppresses metal sintering up to 1000°C. We synthesized intermetallic libraries of small nanoparticles consisting of 46 combinations of platinum with 16 other metal elements and used them to study the dependence of electrocatalytic oxygen-reduction reaction activity on alloy composition and platinum skin strain. The intermetallic libraries are highly mass efficient in proton-exchange-membrane fuel cells and could achieve high activities of 1.3 to 1.8 amperes per milligram of platinum at 0.9 volts.

10.
Chem Sci ; 11(30): 7933-7939, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34094162

RESUMO

Small-sized bimetallic nanoparticles that integrate the advantages of efficient exposure of the active metal surface and optimal geometric/electronic effects are of immense interest in the field of catalysis, yet there are few universal strategies for synthesizing such unique structures. Here, we report a novel method to synthesize sub-2 nm bimetallic nanoparticles (Pt-Co, Rh-Co, and Ir-Co) on mesoporous sulfur-doped carbon (S-C) supports. The approach is based on the strong chemical interaction between metals and sulfur atoms that are doped in the carbon matrix, which suppresses the metal aggregation at high temperature and thus ensures the formation of small-sized and well alloyed bimetallic nanoparticles. We also demonstrate the enhanced catalytic performance of the small-sized bimetallic Pt-Co nanoparticle catalysts for the selective hydrogenation of nitroarenes.

11.
Chem Commun (Camb) ; 55(77): 11579-11582, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31495841

RESUMO

We report a general metal-catalyzed thermal polymerization strategy for the preparation of atomically dispersed catalysts that consist of isolated metal atoms (Fe, Co and Ni) hosted by a polymer-like carrier containing phenanthroline substructure. The prepared atomically dispersed cobalt catalysts exhibit high selectivity, activity, and reusability in catalyzing aromatic alkane oxidation.

12.
iScience ; 15: 282-290, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31102994

RESUMO

Identifying the optimal synthetic and structural parameters in preparing pyrolyzed metal/nitrogen/carbon (M/N/C) materials is crucial for developing effective catalysts for many important catalytic processes. Here we report a group of mesoporous Co/N/C catalysts ranging from polymerized cobalt porphyrin to Co/N-doped carbons, which are prepared by pyrolysis of cobalt porphyrin using silica nanoparticles as templates at different temperatures, for boosting both heterogeneous catalysis and electrocatalysis. It is revealed that the polymerized cobalt porphyrin prepared at low temperature (500°C) is a polymer-like network with exclusive single-atom Co-Nx sites, and that the high-temperature-pyrolysis (>600°C) produces an electrically conductive Co/N-doped carbon, accompanied by part degradation of Co-Nx centers. We identify that the polymerized cobalt porphyrin with undecomposed Co-Nx centers is optimal for heterogeneous catalytic oxidation of ethylbenzene, whereas the electrically conductive Co/N-doped carbon is ideal for eletrocatalytic oxygen reduction. Our results provide new insights for rationally optimizing M/N/C catalysts for different reactions.

13.
Nat Commun ; 10(1): 4977, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31672970

RESUMO

Metal-support interaction is of great significance for catalysis as it can induce charge transfer between metal and support, tame electronic structure of supported metals, impact adsorption energy of reaction intermediates, and eventually change the catalytic performance. Here, we report the metal size-dependent charge transfer reversal, that is, electrons transfer from platinum single atoms to sulfur-doped carbons and the carbon supports conversely donate electrons to Pt when their size is expanded to ~1.5 nm cluster. The electron-enriched Pt nanoclusters are far more active than electron-deficient Pt single atoms for catalyzing hydrogen evolution reaction, exhibiting only 11 mV overpotential at 10 mA cm-2 and a high mass activity of 26.1 A mg-1 at 20 mV, which is 38 times greater than that of commercial Pt/C. Our work manifests that the manipulation of metal size-dependent charge transfer between metal and support opens new avenues for developing high-active catalysts.

14.
Chem Sci ; 10(35): 8236-8240, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31673323

RESUMO

The development of high-performance non-platinum group metal (non-PGM) catalysts for the oxygen reduction reaction (ORR) is still of significance in promoting the commercialization of proton exchange membrane fuel cells (PEMFCs). In this work, a "hierarchically porous carbon (HPC)-supporting" approach was developed to synthesize highly ORR active Fe-phenanthroline (Fe-phen) derived Fe-N x -C catalysts. Compared to commercial carbon black supports, utilizing HPCs as carbon supports can not only prevent the formation of inactive iron nanoparticles during pyrolysis but also optimize the porous morphology of the catalysts, which eventually increases the amount of reactant-accessible and atomically dispersed Fe-N x active sites. The prepared catalyst therefore exhibits a remarkable ORR activity in both half-cells (half-wave potential of 0.80 V in 0.5 M H2SO4) and H2-air PEMFCs (442 mA cm-2 at a working voltage of 0.6 V), making it among the best non-PGM catalysts for PEMFCs.

15.
Sci Adv ; 5(10): eaax6322, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31692785

RESUMO

Metals often exhibit robust catalytic activity and specific selectivity when downsized into subnanoscale clusters and even atomic dispersion owing to the high atom utilization and unique electronic properties. However, loading of atomically dispersed metal on solid supports with high metal contents for practical catalytic applications remains a synthetic bottleneck. Here, we report the use of mesoporous sulfur-doped carbons as supports to achieve high-loading atomically dispersed noble metal catalysts. The high sulfur content and large surface area endow the supports with high-density anchor sites for fixing metal atoms via the strong chemical metal-sulfur interactions. By the sulfur-tethering strategy, we synthesize atomically dispersed Ru, Rh, Pd, Ir, and Pt catalysts with high metal loading up to 10 wt %. The prepared Pt and Ir catalysts show 30- and 20-fold higher activity than the commercial Pt/C and Ir/C catalysts for catalyzing formic acid oxidation and quinoline hydrogenation, respectively.

16.
ACS Appl Mater Interfaces ; 6(7): 4786-96, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24617841

RESUMO

The potential industrial application of thorium (Th), as well as the environmental and human healthy problems caused by thorium, promotes the development of reliable methods for the separation and removal of Th(IV) from environmental and geological samples. Herein, the phosphonate-amino bifunctionalized mesoporous silica (PAMS) was fabricated by a one-step self-assembly approach for enhancing Th(IV) uptake from aqueous solution. The synthesized sorbent was found to possess ordered mesoporous structures with uniform pore diameter and large surface area, characterized by SEM, XRD, and N2 sorption/desorption measurements. The enhancement of Th(IV) uptake by PAMS was achieved by coupling of an access mechanism to a complexation mechanism, and the sorption can be optimized by adjusting the coverage of the functional groups in the PAMS sorbent. The systemic study on Th(IV) sorption/desorption by using one coverage of PAMS (PAMS12) shows that the Th(IV) sorption by PAMS is fast with equilibrium time of less than 1 h, and the sorption capacity is more than 160 mg/g at a relatively low pH. The sorption isotherm has been successfully modeled by the Langmuir isotherm and D-R isotherm, which reveals a monolayer homogeneous chemisorption of Th(IV) in PAMS. The Th(IV) sorption by PAMS is pH dependent but ionic strength independent. In addition, the sorbed Th(IV) can be completely desorbed using 0.2 mol/L or more concentrated nitric acid solution. The sorption test performed in the solution containing a range of competing metal ions suggests that the PAMS sorbent has a desirable selectivity for Th(IV) ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA