Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(4): e2214175120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649419

RESUMO

Copper is distinctive in electrocatalyzing reduction of CO2 into various energy-dense forms, but it often suffers from limited product selectivity including ethanol in competition with ethylene. Here, we describe systematically designed, bimetallic electrocatalysts based on copper/gold heterojunctions with a faradaic efficiency toward ethanol of 60% at currents in excess of 500 mA cm-2. In the modified catalyst, the ratio of ethanol to ethylene is enhanced by a factor of 200 compared to copper catalysts. Analysis by ATR-IR measurements under operating conditions, and by computational simulations, suggests that reduction of CO2 at the copper/gold heterojunction is dominated by generation of the intermediate OCCOH*. The latter is a key contributor in the overall, asymmetrical electrohydrogenation of CO2 giving ethanol rather than ethylene.

2.
ACS Appl Mater Interfaces ; 16(19): 24823-24830, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709644

RESUMO

Ni single-atom-decorated nitrogen-doped carbon materials (Ni-Nx-C) have demonstrated high efficiency in the electrochemical reduction of CO2 (CO2RR) to CO. In this study, Ni-Nx-C active sites were embedded within a carbon membrane via an electrospinning and pyrolysis process. The resulting self-supported carbon membrane hosting Ni-Nx-C sites could be directly utilized as an electrode for the CO2RR. To enhance the CO2RR performance of the carbon membrane, the porous structure of the carbon membrane was fine-tuned by incorporating a pore-forming agent. The optimized porous carbon membrane electrode, K0.66-Ni-NC, achieved an impressive CO faradaic efficiency (FECO) of over 90% within a wide potential range from -0.8 to -1.6 V vs RHE for CO2RR. Additionally, it maintained an FECO of above 90% at -0.8 V vs RHE throughout a 30 h durability test in an H-cell. Further analysis has revealed that the porous structure of the carbon membrane not only facilitates the mass transport of CO2 but also increases the level of exposure of active sites during the CO2RR.

3.
ACS Appl Mater Interfaces ; 15(1): 1376-1383, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36580572

RESUMO

Single-atom catalysts within M-N-C structures are efficient for electrochemical CO2 reduction. However, most of them are powdered and require a coating process to load on the electrode. Herein, we developed a facile approach to the synthesis of large-scale self-supported porous carbon nanofiber electrodes directly decorated with atomically dispersed nickel active sites using facile electrospinning, where poly(methyl methacrylate) was employed to tune well the distributions of pores located in carbon nanofibers. The above self-supported carbon nanofibers were applied as a gas diffusion electrode to achieve 94.3% CO Faraday efficiency and 170 mA cm-2 current density, which can be attributed to the effects of rich mesoporous structures favorable for adsorption and mass transfer of CO2 and single nickel catalysts effectively converting CO2 to CO. This work provides an efficient strategy to fabricate self-supported electrodes and may accelerate the progress toward industrial applications of single-atom catalysts in the field of CO2 electroreduction.

4.
RSC Adv ; 8(22): 12053-12059, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35539385

RESUMO

TiO2 nanotube (TNT) supported Rh and Ru nanoparticle catalysts were prepared via impregnation-photoreducing procedure and characterized with various methods. Their catalytic performances in hydroformylation were evaluated by using vinyl acetate and cyclohexene as substrates. The results indicate that the presence of Ru in the catalysts can enhance the catalytic activity of catalysts for the hydroformylation of vinyl acetate, but do not play the same role in the hydroformylation of cyclohexene; the sequence of loading metal has a significant effect on the catalytic performances of the title catalysts. Additionally, it is found that Ru/TNTs shows catalytic activity for the hydroformylation of vinyl acetate though it does not for the hydroformylation of cyclohexene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA