Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 88(12): 2073-2083, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38462451

RESUMO

The study of many membrane enzymes in an aqueous medium is difficult due to the loss of their catalytic activity, which makes it necessary to use membrane-like systems, such as reverse micelles of surfactants in nonpolar organic solvents. However, it should be taken into account that the micelles are a simplified model of natural membranes, since membranes contain many different components, a significant part of which are phospholipids. In this work, we studied impact of the main phospholipids, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), on activity of the membrane enzymes using galactonolactone oxidase from Trypanosoma cruzi (TcGAL) and L-galactono-1,4-lactone dehydrogenase from Arabidopsis thaliana (AtGALDH) as examples. Effect of the structure (and charge) of the micelle-forming surfactant itself on the activity of both enzymes has been studied using an anionic surfactant (AOT), a neutral surfactant (Brij-96), and a mixture of cationic and anionic surfactants (CTAB and AOT) as examples. The pronounced effect of addition of PC and PE lipids on the activity of AtGALDH and TcGAL has been detected, which manifests as increase in catalytic activity and significant change in the activity profile. This can be explained by formation of the tetrameric form of enzymes and/or protein-lipid complexes. By varying composition and structure of the micelle-forming surfactants (AOT, CTAB, and Brij-96) it has been possible to change catalytic properties of the enzyme due to effect of the surfactant on the micelle size, lipid mobility, charge, and rigidity of the matrix itself.


Assuntos
Arabidopsis , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Óleos de Plantas , Polietilenoglicóis , Açúcares Ácidos , Trypanosoma cruzi , Oxirredutases , Micelas , Cetrimônio , Lactonas , Tensoativos/farmacologia , Tensoativos/química , Lipídeos
2.
Biochemistry (Mosc) ; 88(1): 131-141, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37068875

RESUMO

Inhibition of biosynthetic pathways of compounds essential for Trypanosoma cruzi is considered as one of the possible action mechanisms of drugs against Chagas disease. Here, we investigated the inhibition of galactonolactone oxidase from T. cruzi (TcGAL), which catalyzes the final step in the synthesis of vitamin C, an antioxidant that T. cruzi is unable to assimilate from outside and must synthesize itself, and identified allylbenzenes from plant sources as a new class of TcGAL inhibitors. Natural APABs (apiol, dillapiol, etc.) inhibited TcGAL with IC50 = 20-130 µM. The non-competitive mechanism of TcGAL inhibition by apiol was established. Conjugation of APABs with triphenylphosphonium, which ensures selective delivery of biologically active substances to the mitochondria, increased the efficiency and/or the maximum percentage of TcGAL inhibition compared to nonmodified APABs.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/metabolismo , Oxirredutases/metabolismo , Açúcares Ácidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA